
Service Oriented Middleware for IoT
SOM, based on ROA or SOA Approaches

Reference : Service-oriented middleware: A survey Jameela Al-Jaroodi,
Nader Mohamed, Journal of Network and Computer Applications, Volume 35,
Issue 1, January 2012, Pages 211–220, Collaborative Computing and
Applications

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

MIT Curriculum

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

WLPAN : LoRa - Sigfox

Web Service / COAP - composition

Web Service Discovery – Dynamimc Composition

MQTT / CEP (composition)

Semantic Web of Things

MQTT for simples Objects

 Mostly for Sensors Networks …

 Model of composition : message passing and event driven

 Ex. of Composition : CEP using synchronous language
06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

S S

CEP CEP

S S S

CEP

CEP : Complex

Events

Processing

When Objects are more sophisticated devices

than sensors …
 What happen when Objects are more sophisticated ?

 Objects need Address (mostly IP address)

 Objects need more sophisticated communication protocols

(Data/Ressource based or procedure based)

 Model of composition : Service oriented Programming (Mostly

Web services oriented)

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Web Service for an “Access” layer for IoT

 Provides a way to access

services (devices) through the

Web

 Using Web standard protocols

 Using dedicated protocols

specific to IoT

 etc…

 Different kind of architectures

Middleware and Service Oriented Concepts

 Service-Oriented Middleware* is a kind of middleware based on the Service

Oriented Architecture (SOA) paradigm that supports the development of

distributed software systems in terms of loosely coupled networked services.

 In SOA, networked resources are made available as autonomous software

services that can be accessed without knowledge of their underlying

technologies.

 Key feature of SOA is that services are independent entities, with well-

defined interfaces, which can be invoked in a standard way, without requiring

the client to have knowledge about how the service actually performs its

tasks.

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

(*) A Perspective on the Future of Middleware-based
Software Engineering, Valérie Issarny, Mauro Caporuscio,
Nikolaos Georgantas, Workshop on the Future of Software

Engineering : FOSE 2007, 2007, Minneapolis, United States.
pp.244-258, 2007, https://hal.inria.fr/inria-00415919

https://hal.inria.fr/inria-00415919

Middleware and Service Oriented Concepts

 The SOA style is structured around
three key architectural
components: (i) service provider,
(ii) service consumer, and (iii)
service registry

 In SOA-based environments, the
Service-Oriented Middleware (SOM)
is in charge of enabling the
deployment of services and
coordination among the three key
conceptual elements that
characterize the SOA style.

 Popularity of service oriented
computing is mainly due to its Web
Service instantiation.

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Trends Web of Things or Web Service for

Device
 Two kinds of approaches based on Service Oriented Architectures :

 ROA (DAO) : Resource or data oriented

 Communication pattern between service consumer and provider is based on

shared URL

 Example : Resources as URL like hyperlinks in a classical Web approach

 SOA : Service oriented (procedure based)

 Communication pattern between service consumer and provider is RPC

 Example : RPC using SOAP protocol over HTTP

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Resource Oriented

Architecture

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

RESTful Web Services

 REpresentational State Transfer (REST)

 Architecture inherent in all web based system since 1994, not explicitly

described as an architecture until later

 An architecture - not a set of standard

 Web Services is both an architecture and a set of standards

 Goal: To leverage web based standards to allow inter-application

communication as simply as possible

 Matches the ‘standard’ web interaction model

 Resources as URL like hyperlinks in a classical Web approach

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

REST architecture

 Uses HTTP operations (CRUD equivalence, the four basic functions of persistent
storage):

 POST = "here's some new info" (Create)

 GET = "give me some info" (Read/Retrieve)

 PUT = "here's some update info" (Update/Modify)

 DELETE = "delete some info" (Delete/Destroy)

 Typically exchanges XML documents but not only …

 But supports a wide range of other internet media types (JSON, XML, CSV …)

 Example of client side REST request: GET /shoppingcart/5873

 Server must be able to correctly interpret the client request as there is no explicitly
defined equivalent to an interface definition

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

The standard Web architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(HTML)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(HTML doc)

HTTP response
Response

(HTML doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

06/02/2018
Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

The RESTful architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(XML| JSON)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP responseResponse

(XML doc | JSON doc)

HTTP responseResponse

(XML doc| JSON doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

REST Architecture

 Servers are stateless and messages can be interpreted without
examining history

 Messages are self-contained

 There is no such thing as a “service” like procedures.

 There are just resources which are accessed through URI

 URI = generalization of URL

 Clients navigate through a series of steps towards a goal by following
hypertext links (GET) and submitting representations (POST).

 When WS-REST are implemented to access to physical
objects, we talk about Web of Things

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

06/02/2018

ROA and Mashup

 Mashups is “A way to create new Web applications by combining

existing Web resources utilizing data and Web APIs” [Benslimane et

al., 2008]

 ROA is Well-adapted for Mashups (Composite Web Applications)

 Well-adapted for Web Sensors Network (WSN)

 But lacks for non sensor device … like actuators …

 And then for Sophisticated Devices ….

Things - Physical

Objects

as data providers

Data sensors

Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

REST – strong versus weak

 Pure REST should use ‘pure’ URI only

 E.g. GET /shoppingcart/5873

 Many REST implementations also allow parameter passing

 E.g. GET /shoppingcart/5873?sessionID=123

 Allowing parameter passing makes REST a lot more usable but blurs the
architectural principle of statelessness

 Indeed Data can be specific command like instruction code …

 But is it the purpose ?

 Is this not another way to rebuild a SOA stack ?

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Service Oriented

Architecture (SOAP-WS)

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

SOA : Service oriented Architecture

 A service provides business functions to its consumer and in ISO 19119

[ISO/TC-211] it is defined as

 “ Distinct part of the functionality that is provided by an entity through

interfaces ”

 Also called WS-* (for * recommendations, Cf.

https://www.w3.org/2002/ws/)

 SOAP based Web Service, the alternative

 RPC using SOAP protocol over HTTP

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

https://www.w3.org/2002/ws/

Sample SOAP RPC Message

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

 <Envelope> is the root node

 <Header>, <Body> et <Fault> are children nodes :

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<soap:Header>

... Header information...

</soap:Header>

<soap:Body>

... Body information...

<soap:Fault> ...Fault information...

</soap:Fault>

</soap:Body>

</soap:Envelope>

WS-*architecture more than ROA

 SOAP+WSDL+UDDI defines a general

model for a web service architecture.

 SOAP: Simple Object Access Protocol

 WSDL: Web Service Description

Language

 UDDI: Universal Description and

Discovery Protocol

 Service consumer: User of a service

 Service provider: Entity that

implements a service (=server)

 Service registry : Central place where

available services are listed and

advertised for lookup

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

WS-* Models

 Stack of WS-standards

 The W3C and OASIS WS-stack provide a framework / toolbox for

constructing web service architectures

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Disadvantages of Web Services

 Low-level abstraction

 leaves a lot to be implemented

 Interaction patterns have to be built

 one-to-one and request-reply provided

 one-to-many?

 No location transparency

 HEAVY STACK for tiny devices !

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

CoAP : Constrained Application

Protocol
LightWeight RESTFUL protocol for IoT and M2M …

Over UDP

RFC 7252 (IETF 06-2014)

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

What CoAP is (and is not)

 CoAP is

 A RESTful protocol

 Both synchronous and asynchronous

 For constrained devices (small
mem, slow proc) and networks

 Specialized for M2M applications

 Easy to proxy to/from HTTP

 CoAP is not

 A replacement for HTTP

 General HTTP compression

 Separate from the web

CoAP/protocol

 Endpoint

 IP addr, UDP port

 CoAP Transactions

 CoAP Message Format

 4 bytes header

 Options

 Payload

 uint (unsigned integer)

 string

 ...

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Ver| T | OC | Code | Message ID |
+-+
| Options (if any) ...
+-+
| Payload (if any) ...
+-+

Client Server

| |

| CON tid=48 |

| GET http://n.. |

+---------------->|

| |

| ACK tid=48 |

|<----------------+

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

http://n/

CoAP/transport and Endpoint

 Endpoint

 IP addr, UDP port

 Transport Protocol

 Default UDP but not required

 SMS, TCP and SCTP also possible

 Ports

 UDP Port 5683 (mandatory)

 UDP Ports 61616-61631 compressed 6lowPAN

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Ver| T | OC | Code | Message ID |

+-+

| Options (if any) ...

+-+

| Payload (if any) ...

+-+

CoAP/protocol

 The first 4 bytes that are mandatory
contain the following pieces of information:

 A. Byte 0

 a. 2-bit version: The first two bits indicate the CoAP version number. As of now, only
version 1 is supported.

 b. 2-bit type code: The next two bits indicate the message type. This can take one of 4
values – CON, NON, ACK, RST

 c. 4-bit token length: The next 4 bits indicate the length of the token value in bytes. As
explained before, the token is used to correlate messages. The length of token can be
between 0-8 bytes. Other values are reserved.

 B. Byte 1 – This contains the message code.

 The message code values can be GET, PUT, POST, NOT FOUND etc. I will talk about other
possible message codes later.

 C. Byte 2,3 – The next two bytes together make up a 16-bit number.

 This is where the message ID is carried. This is an unsigned number.

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

CoAP/protocol Options

 After the first 4 bytes, based on the context, the message may contain

additional bytes

Typical Option:

0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+---+---+---+---+

| option delta | length | value ... |

+---+---+---+---+---+---+---+---+---+---+---+---+

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Ver| T | OC | Code | Message ID |

+-+

| Options (if any) ...

+-+

| Payload (if any) ...

+-+

CoAP/example
Client Server

| |

| |

+----->| Header: GET (T=CON, Code=1, MID=0x7d34)

| GET | Uri-Path: "temperature"

| |

| |

|<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x7d34)

| 2.05 | Payload: "22.3 C"

| |

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 1 | 0 | 1 | GET=1 | MID=0x7d34 |

+-+

| 11 | 11 | "temperature" (11 B) ...

+-+

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 1 | 2 | 0 | 2.05=69 | MID=0x7d34 |

+-+

| "22.3 C" (6 B) ...

+-+

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

The Transaction Model

 Transport

 CoAP is defined for UDP

 Transaction

 Single message exchange between end-points

 CON, NON, ACK, RST

 REST

 Piggybacked on transaction messages

 Method, Response Code and Options (URI, content-type etc.)

CoAP/message types

 Confirmable message

 Non-confirmable message

 Ack message

 Reset message

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Synchronous Transaction

Client Server Client Server

| | | |

| CON tid=47 | | CON tid=53 |

| GET /foo | | GET /baz |

+---------------->| +---------------->|

| | | |

| ACK tid=47 | | ACK tid=53 |

| 200 "<temp... | | 404 "Not... |

|<----------------+ |<----------------+

| | | |

Asynchronous Transaction

Client Server

| |

| CON tid=48 |

| GET http://n.. |

+---------------->|

| |

| ACK tid=48 |

|<----------------+

| |

... Time Passes ...

| |

| CON tid=783 |

| 200 http://n.. |

| "<html.. |

|<----------------+

| |

| ACK tid=783 |

+---------------->|

| |

http://n/

CoAP vs MQTT

 MQTT  CoAP

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Broker

Node

Node

Node

Node

Node

Node

Node

Server Server

Server Server

CoAP vs MQTT

 MQTT

 Publish/Subscribe

 Non RESTful

 QoS

 Store and Forward

 Good for transferring

data/commands over unstable

connections

 CoAP

 Web Service

 RESTful

 No QoS in protocol

 Goof for client/server concepts

over stable connections. Nodes

only execute “commands”

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

 Both

 Well suited for low volumes networks and low power devices (IoT)

 Can use secure connections (CoAP uses DTLS as preferred cryptographic method)

And…
What do we need now?

06/02/2018Service oriented Middleware for IoT - Web of Things (HTTP Rest & CoAP) -J.-Y. Tigli

Web Service for a “Find” layer for IoT

 Provides a way to find and
locate relevant services
(devices) on the Web

 Search engines,

 Crawlers,

 etc…

 Some standard provides some
protocols for

 Dynamic discovery

 Availability Management

 Ex. UPnP and DPWS

 We’ll see that in the next course

