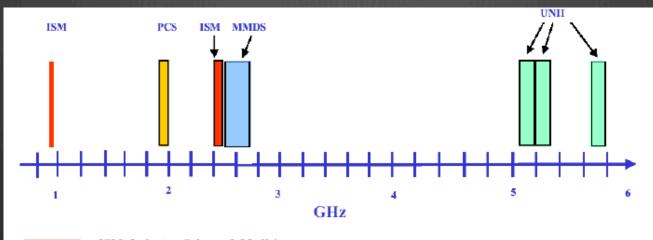

Introduction to Wireless Networks

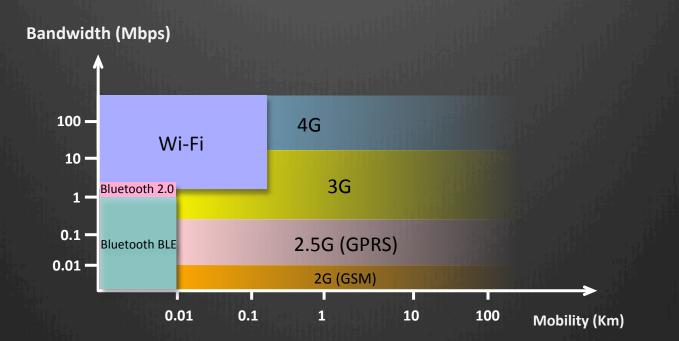

Objet Communicants Dino Lopez <u>dino.lopez@unice.fr</u> http://www.i3s.unice.fr/~lopezpac/

Objectives of this course

2

The ISM frequency band

- ISM: Industry, Science & Medicine
- PCS: Personal Communication Services
- MMDS: Multi-channel Multipoint Distribution System
- UNII: Unlicensed National Information Infrastructure

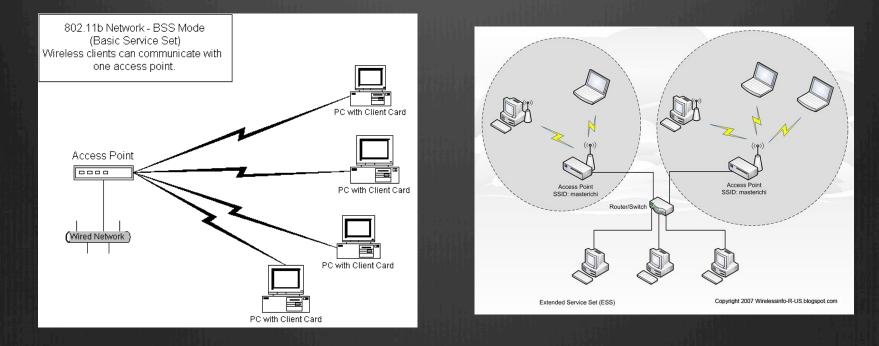

http://www.art-telecom.fr/

Wireless standards – coverage range classification

- TAGGING
 - ➢ RFID
- WPAN
 - ➢ IEEE 802.15
 - ✓ IEEE 802.15.1 Bluetooth
 - ✓ IEEE 802.15.3 UWB (Ultra Wide Band)
 - ✓ IEEE 802.15.4 ZigBee
- WLAN
 - ➢ IEEE 802.11 (Wi-Fi)
 - IEEE 802.11b, a, g

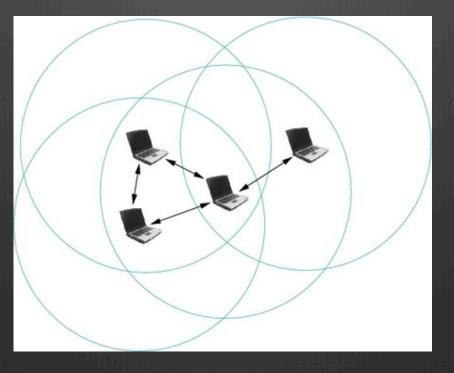
- ➢ IEEE 802.11n
- IEEE 802.11s
- WMAN
 - ➢ IEEE 802.16
 - ➢ IEEE 802.16-2004
 - IEEE 802.16e/IEEE 802.20 (Wi-Mobile)
- WRAN
 - IEEE 802.22 Utilisation des bandes TV 54-698 (Wi-RAN)

Wireless Spectrum Sharing

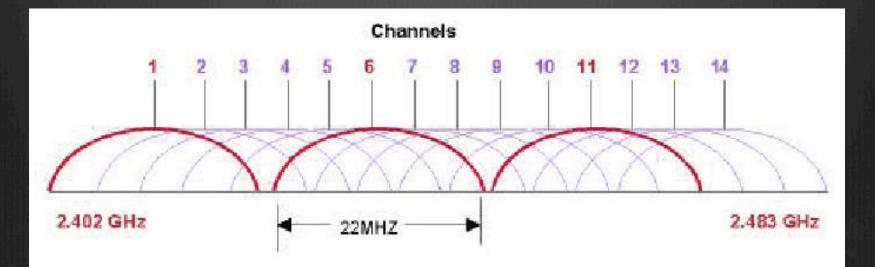


6

Wi-Fi – IEEE802.11

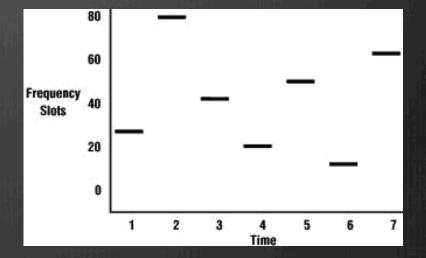

- Completely compatible with IP networks
 - Only the two lowest layers are modified. i.e. the Data Link and the Physical Layers
- 2 working modes
 - Ad hoc mode. Mobile nodes (MN) communicates with neighbors (MNs also) in the coverage area
 - Infrastructure mode. Nodes communicates with a non mobile node (the Access Point – AP)
- 3 physical layers
 - Direct Sequence Spread Spectrum DSSS
 - Frequency Hopping Spread Spectrum FHSS
 - Infrared

Wi-Fi – The Infrastructure Mode



8

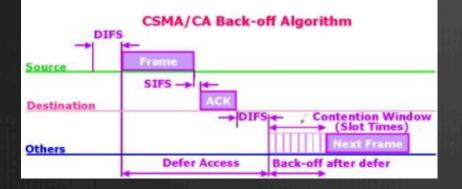
Wi-Fi – The Ad hoc mode

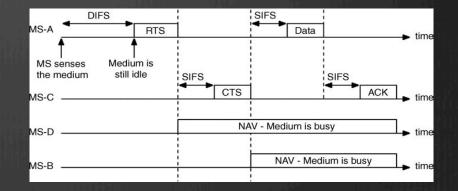


The DSSS Physical Layer

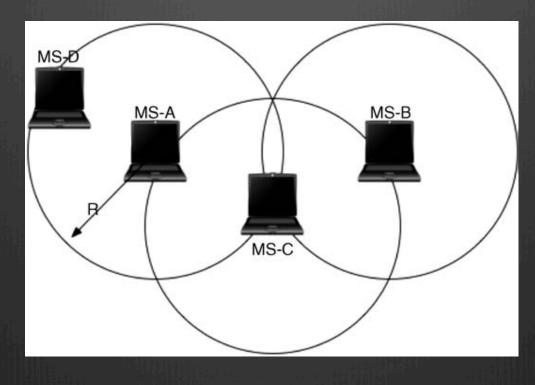
The FHSS Physical Layer

- 75 channels of 1MHz each
- Switching channel every 400ms
- Rate = 2Mbps

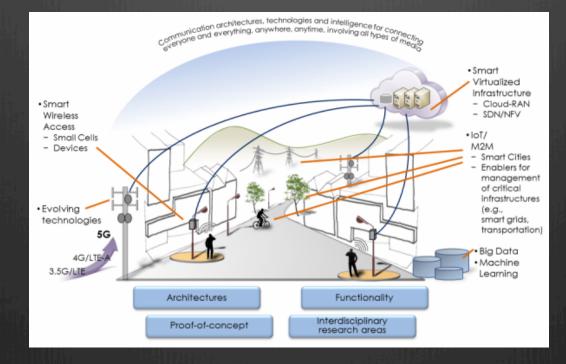


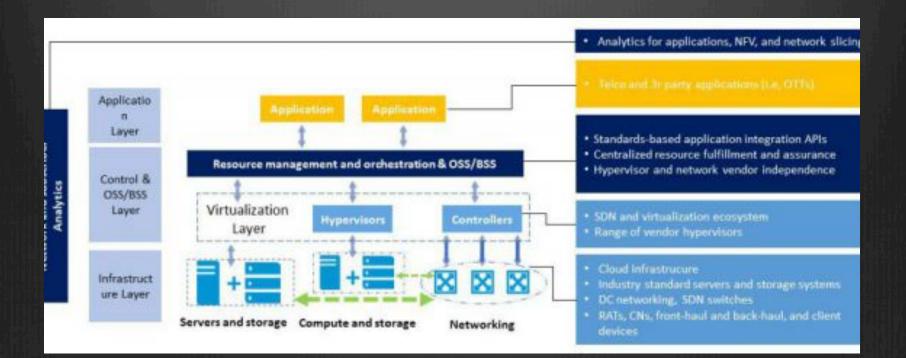

Some Common Problems/ Questions in Wireless Networks

Channel Access Method


- Distributed coordination
- Single point controlled

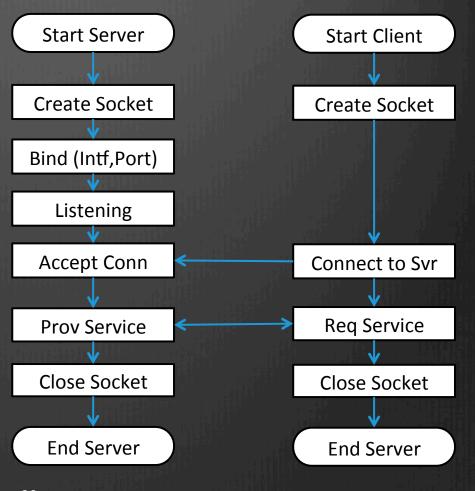
Distributed Coordination Function in 802.11 CSMA/CA CSMA/CA w RTS/CTS


The Hidden Node and the Exposed Node Problems


The Wireless World Research Forum

Working Group C Communication Architectures and Technologies

Scope and Network Vision – up to 2015


Scope and Network Vision – 2016

The Sockets

Connected Sockets

- Bluetooth connected sockets follows the same principle of IP connected sockets
- The flow-chart of a connected socket

The example of the TCP socket

Server

Client

```
import socket
1.
      HOST = '' # any available interf
2.
3.
      PORT = 5000 # Arbitrary non-priv port
4.
      s = socket.socket(socket.AF INET,
      socket.SOCK STREAM)
5.
      s.bind((HOST, PORT))
6.
      s.listen(1)
7.
      conn, addr = s.accept()
8.
     while 1:
9.
          data = conn.recv(1024)
      if not data: break <</pre>
10.
         conn.sendall("Hi!")
11.
12.
      conn.close()
13.
      s.close()
```

1.	<pre>import socket</pre>
2.	HOST = '10.0.0.2' # The remote host
3.	PORT = 5000 # The remote port
4.	<pre>s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)</pre>
5.	<pre>s.connect((HOST, PORT))</pre>
6.	val = "Hello!"
7.	s.sendall(val)
8.	data = s.recv(1024)
-9.	s.close()
10.	<pre>print "Received: %s" %(data)</pre>

Bluetooth

Origin of the name

- Harald I Bleutooth (in Danish, Harald Blåtand) (b. c. 910—d. c. 987), king of Denmark was credited with the first unification of Denmark and Norway
- Ericsson, inspired on the history of Harald I, proposed a new technology which aims at linking different devices from different manufacturers, but at low-cost

Objectives of the Bluetooth Technology

• Cable replacement

- Ericsson decided to investigate the feasibility of a low-power and low cost radio interface between mobile phones and their accessories
- Today, the Bluetooth technology is supported by the Bluetooth SIG (Special Interest Group), founded by Ericsson, IBM, Intel, Nokia and Toshiba in 1998
- Personal Area Networks
- Ad hoc networks

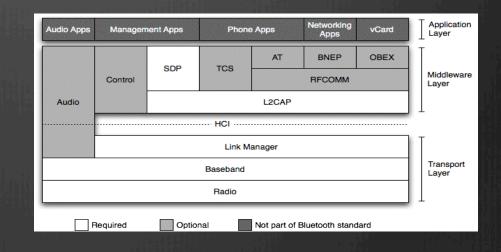
Advantages and Disadvantages

Advantages

- Eliminate wires and cables between stationary and mobile devices
- Facilitates both data and voice communication
- It is inexpensive
- Possibility of automatically establish communication
- Automatically create ad hoc networks

Disadvantages

- Low rate
- Low range
- Security

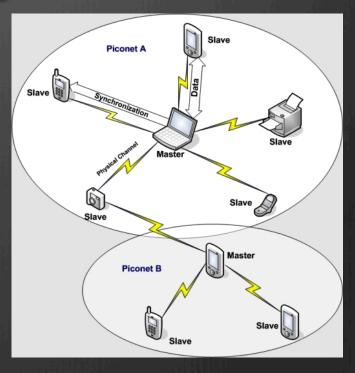

Bluetooth Specifications

- Bluetooth 1.0 and 1.0B
- Bluetooth 1.1
 - ➢ IEEE 802.15.1−2002
- Bluetooth 1.2
 - ➢ IEEE 802.15.1−2005
- Bluetooth 2.0 + EDR and
 2.1 + EDR

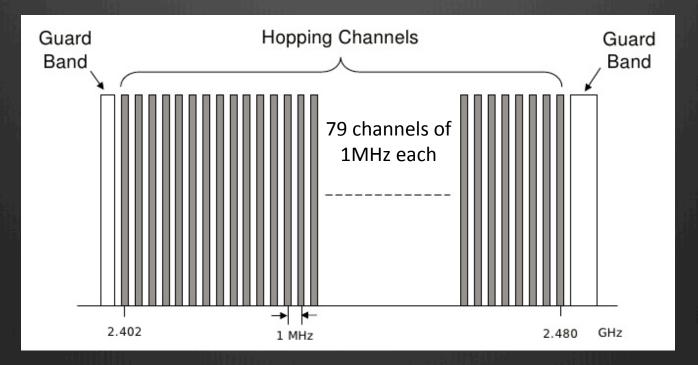
- Bluetooth 3.0 + HS
 > Relies on 802.11
- Bluetooth 4.0 + LE
- Bluetooth 4.1 and 4.2
- Bluetooth 5
 ≻ Higher rate → 2Mbps

The Bluetooth Architecture

- The horizontal approach
 - Similar to the OSI model
- The vertical approach
 - The application drives the Bluetooth layered implementation
 - Implementation of profiles
- Mandatory and optional protocols

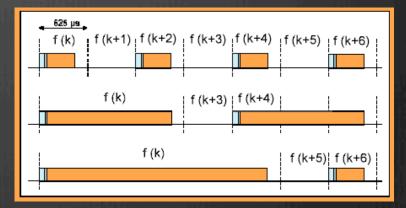

The Radio Layer – Power Classes

Class 1


- maximum of 100mW and a minimum of 1mW
- Expected range of 100m
- > This device is capable of controlling power, in steps of 2 to 8dB
- Class 2
 - Maximum of 2.5mW and a minimum of 0.25 mW
 - Expected range 10m
 - Power control is optional
- Class 3
 - Maximum of 1 mW
 - Expected range 10cm
 - Power control is optional

The Baseband Layer – The Network Topologies

- The piconet
 - The piconet is a collection of two or more devices sharing the same physical channel
 - One master can control up to seven slaves
- The scatternet
 - Interconnection of several piconets
 - Bluetooth does not natively support routing



The Frequency Band Division

Physical Channel Construction

- Physical channels: pseudo-random code driving the frequency hopping sequence
 - Time Division Duplex (TDD) scheme
 - 1600 hops/s in the connected mode
 - 3200 hops/s in inquiry and page mode
- The channel is divided in timeslots (TS) of 625microsecs
- The Master sends data packets in an odd-numbered TS and the slave replies in the following even-numbered TS
- Packets can take 1, 3 or 5 TSs

The 4 Physical Channels

- The basic piconet channel
 - Used by connected devices during normal operation
- The adapted piconet channel
 - Used to avoid interference and easy coexistence with other systems working in the same band
 - A subset of the 79 available channels is used (minimum 20)
 - Slaves use the same frequency as the master in its preceding transmission
- The inquiry scan channel
 - Used in inquiry mode in order for a device to be discovered
- The paging scan channel
 - Used to page a connectable device

The 4 physical links

- Active Physical Link
- Parked Physical Link
- Inquiry Physical Link
- Active Physical Link

Logical Links

- Synchronous Connection-Oriented (SCO) logical transport
- Extended Synchronous Connection-Oriented (eSCO) logical transport
- Asynchronous Connection-Oriented (ACL) logical transport
 - Transmission employs an ARQ protocol
- Active Slave Broadcast (ASB) logical transport
 - Control message for the whole piconet
- Parked Slave Broadcast (PSB) logical transport
 - Control message for the whole piconet

Low Power Modes

• Hold mode

Physical link is only active during slots reserved for the operation of synchronous links. Either, the master or the slave can require to establish a hold mode

• Sniff mode

- Device wakes up periodically to communicate with the master or engage any activity on another physical channel
- SCO and eSCO are not affected
- Reserved for slaves
- Parked state
 - Used to stay synchronized with the master without being an active member of the piconet
 - > All logical links are disable, except the PSB link

Logical Link Control and Adaptation Protocol (L2CAP)

• L2CAP provides

- Multiplexing through Channel Identifiers (CID)
- Segmentation and reassembly operations
 - ✓ Up to 64 kB service data unit (payload)
- Per-channel flow control and retransmission
- L2CAP does not transport voice or synchronous data, although VoIP would be carried by L2CAP
- L2CAP provides asynchronous connection-oriented and connectionless channels, with some QoS level
 - 1. Basic flow control default
 - 2. Flow control mode
 - 3. Retransmission mode

Service Discovery Protocol

• SDP enables a Bluetooth device to

- Inquire what services are available in its environment and their characteristics.
- Inform the list of services provided by itself
- Each Bluetooth device maintains a list of Service Records. Each record contains the list of attributes of a given application that characterize the provided service
- Interoperability between Bluetooth devices is enabled with the introduction of Profiles
- Services are identified by UUIDs (128 bits)
 - uuid32 assigned or reserved
 - uuid16 currently assigned numbers

Generic Access Profile

- GAP defines the generic procedures to
 - Discover Bluetooth devices
 - Connect Bluetooth devices
 - Use different levels of security
- GAP describes the use of the lower layers of the Bluetooth protocol stack, as well as some higher layer protocols
- GAP defines the generic terms that can be presented to the customers

GAP

- The Bluetooth device address (BD_ADDR)
 - The baseband address coded on 48 bits
- The Bluetooth device name
 - Coded on 248 bytes maximum
- The Bluetooth passkey (Bluetooth PIN)
 - Used to authenticate two Bluetooth devices
 - Maximum length = 16 bytes
- The class of device
 - Types of services supported by the device

Addresses of Bluetooth Devices

- Bluetooth Device Address (BD_ADDR)
 - Lower Address Part (LAP) 24 bits
 - Upper Address Part (UAP) 8 bits
 - Non-significant Address Part (NAP) 16 bits
- Active Member Address (AM_ADDR)
 - Identify active piconet members (3 bits)
 - Broadcast address = 000
- Parked Member Address (PM_ADDR)
 - Identify parked devices (8 bits)
- Access Request Address (AR_ADDR)
 - The parked device use this address to become an active member

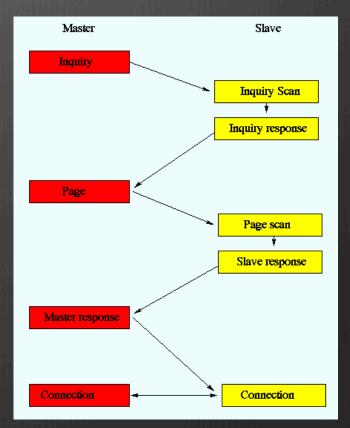
LSB					
	Company Assigned Company_Id		any_ld		
	LAP	UAP	NAP		

Packet Format

- 3 types of access code
 - Device AC (page, page scan)
 - Channel AC (identify the piconet)
 - Inquiry AC
 - ✓ General IAC (GIAC)
 0x9E8B33
 - ✓ Dedicated IAC (DIAC) from 0x9E8B00 to 0x9E8B3F

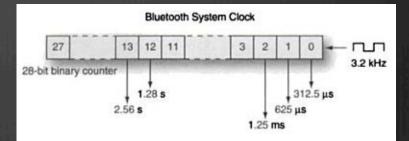
LSB 72) 1.14. 54.1		1012 (1944)
LOD II	2 bits 54 l	bits 0-	2745 bits MSB
ACC		ER PAY	LOAD

Packet Format


• Header

- AM_ADDR. Active Member ADDR
- TYPE. (SCO, ACL or commands)
- FLOW (flow control)
 - \checkmark 0 = stop; 1 = continue
- > ARQ
 - ✓ 1 Packet successfully received 0 otherwise
- > SEQN
 - ✓ Sequence bit
- Header Error Control (HEC)
 - ✓ $G(X) = X^8 + X^7 + X^5 + X^2 + X^1 + 1$

S)	LSB 72 bits		54 bits		0 - 2745 bits	MSB
	ACCESS CODE	HEADER			PAYLOAD	
				-		
d.						
SB 3	4	. 1	1	1	8	MSB
AM_AC	DR TYP	E FLOW	ARQN	SEQN	HEC	


Discovery and Connection

Inquiring and paging
 Master: 3200 hops/s
 Slave: 1.28 hops/s

Bluetooth Synchronization

- Every device has its own native clock (CLKN)
- The clock is implemented with a 28-bit counter
- driven by a low power oscillator when in STANDBY, Park, Hold and Sniff mode
- Driven by a crystal oscillator

Bluetooth and Linux

Bluez

- Bluez provides support for the core Bluetooth layer and protocols
 - Standard Bluetooth
 - Bluetooth LE
- Initially developed by Qualcomm, is now an open source project under the terms of GPL (http://www.bluez.org/)
 - Available in several Linux distributions
- Bluez provides several command-line tools to configure Bluetooth devices and debug the applications

Some Bluez Commands

hciconfig

- Configure the basic properties of Bluetooth adapters
- If invoked without arguments, it will display the status of the current adapters attached to the computer
- Bluetooth devices are usually identified by "hciX", where X is the number of the device

hcitool

- Search and detect nearby Bluetooth devices
- Test and show information about low-level Bluetooth connections
- hcidump
 - For low-level debugging of connection setup and data transfer

Some Bluez Commands

sdptool

- Browsing and searching services advertised by nearby devices
- Basic configuration of the SDP services offered by the local machine
- l2ping
 - The "ping" tool for Bluetooth devices
- uuidgen
 - Generates UUIDs
 - Useful to advertise applications with non standard UUID
- gatttool
 - > Client implementation of the GATT protocol. Manipulates the BLE attributes

Package Installation

- We will need the following packages (to install with the APT package manager)
 - bluez-*
 - libbluetooth-dev
 - > python-bluez
- For the labs, you will need to stop the bluetooth daemon, and lunch it again in compatibility mode (# bluetoothd -C)