

Middleware and

Communication Patterns

Middleware

Operating System Comms

Network

Distributed Applications

Middleware

Operating System Comms

Network

Middleware

Operating System Comms

Network

(1) Remote Procedure Call (RPC)

 Masks remote function calls as being local

 Client/server model

 Request/reply paradigm usually implemented with message passing in RPC

service

 Marshalling of function parameters and return value

Caller RPC Service RPC Service Remote
Function

call(…)

1) Marshal args
2) Generate ID
3) Start timer 4) Unmarshal

5) Record ID

6) Marshal
7) Set timer

8) Unmarshal
9) Acknowledge

fun(…)

message

Properties of RPC

 Language-level pattern of function call

 easy to understand for programmer

 Synchronous request/reply interaction

 natural from a programming language point-of-view

 matches replies to requests

 built in synchronisation of requests and replies

 Distribution transparency (in the no-failure case)

 hides the complexity of a distributed system

Disadvantages and limitations of RPC

 Synchronous request/reply interaction

 tight coupling between client and server

 client may block for a long time if server loaded

 leads to multi-threaded programming at client

 slow/failed clients may delay servers when replying

 multi-threading essential at servers

 Distribution Transparency

 Not possible to mask all problems

 RPC paradigm is not object-oriented

 invoke functions on servers as opposed to methods on objects

fork(…)

join(…)

remote call

Do you know ?

 Any example for RPC based Middleware ?

 in your background …

 Example :

 See XML-RPC : http://www.tutorialspoint.com/xml-rpc/

 One kind of Web Service Middleware Communication paradigm is RPC

 See W3C consortium : http://www.w3schools.com/webservices/

(2) Object-Oriented Middleware (OOM)

 Objects can be local or remote

 Object references can be local or remote

 Remote objects have visible remote interfaces

 Masks remote objects as being local using proxy objects

 Remote method invocation

object A

proxy
object B

OOM OOM

skeleton
object B

object B

local remote

object
request
broker

/
object

manager

object
request
broker

/
object

manager

Properties of OOM

 Support for object-oriented
programming model

 objects, methods, interfaces,
encapsulation, …

 exceptions (were also in some RPC
systems)

 Synchronous request/reply
interaction

 same as RPC

 Location Transparency

 system (ORB) maps object
references to locations

Do you know ?

 Any example for OOM ?

 in your background …

 Examples …

Java Remote Method Invocation (RMI)

 Covered in Java programming

 Distributed objects in Java

public interface PrintService extends Remote {

int print(Vector printJob) throws RemoteException;

}

• RMI compiler creates proxies and skeletons

• RMI registry used for interface lookup

• Entire system written in Java (single-language system)

CORBA

 Common Object Request Broker Architecture

 Open standard by the OMG (Version 3.0)

 Language and platform independent

• Object Request Broker (ORB)

– General Inter-ORB Protocol (GIOP) for communication

– Interoperable Object References (IOR) contain object location

– CORBA Interface Definition Language (IDL)

• Stubs (proxies) and skeletons created by IDL compiler

CORBA IDL

 Definition of language-independent remote interfaces

 Language mappings to C++, Java, Smalltalk, …

 Translation by IDL compiler

 Type system

 basic types: long (32 bit),
long long (64 bit), short,
float, char, boolean,
octet, any, …

 constructed types: struct, union, sequence, array, enum

 objects (common super type Object)

 Parameter passing

 in, out, inout

 basic & constructed types passed by value

 objects passed by reference

typedef sequence<string> Files;

interface PrintService : Server {

void print(in Files printJob);

};

Advantages and Disadvantages of OOM

 Totally transparent distributed programming

 Synchronous request/reply interaction only

 So CORBA oneway semantics added Asynchronous Method Invocation (AMI)

 But implementations may not be loosely coupled

 Distributed garbage collection

 Releasing memory for unused remote objects

 OOM rather static and heavy-weight

 Unadapted for ubiquitous systems and embedded devices

(3) Message-Oriented Middleware (MOM)

 Communication using messages

 Messages stored in message queues

 message servers decouple client and server

 Various assumptions about message content

Client App.

local message
queues

Server App.

local message
queues

message
queues

Network Network Network

Message Servers

Properties of MOM

 Asynchronous interaction

 Client and server are only loosely coupled

 Messages are queued

 Good for application integration

 Processing of messages by intermediate message server(s)

 May do filtering, transforming, logging, …

 Networks of message servers

Java Message Service (JMS)

 API specification to access MOM implementations

 Two modes of operation *specified*:

 Point-to-point

 one-to-one communication using queues

 Publish/Subscribe

 cf. One pattern for Event-Based Middleware (ex . Java)

 JMS Server implements JMS API

 JMS Clients connect to JMS servers

 Java objects can be serialised to JMS messages

Disadvantages of MOM

 Poor programming abstraction (but has evolved)

 Rather low-level (cf. Packets)

 Request/reply more difficult to achieve, but can be done

 Message formats originally unknown to middleware

 No type checking (JMS addresses this – implementation?)

 Queue abstraction only gives one-to-one communication

 Limits scalability (JMS pub/sub – heavy implementation of event based

communications)

(4) Event-Based Middleware

 1 emitter – N receiver

 With broadcast communications (ex. UDP)

 With unicast communications or peer to peer (ex. TCP), multiple

communications are required

(4) Event-Based Middleware, ex.

Publish/Subscribe Pattern

 Publishers (advertise and) publish events (messages)

 Subscribers express interest in events with subscriptions

 Event Service notifies interested subscribers of published events

 Events can have arbitrary content (typed) and name/value pairs

subscribe

Event Service

(event-broker

network)

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

publish

publish

publish

subscribe

subscribe

notify

notify

notify

Properties of Publish/Subscribe

 Asynchronous communication

 Publishers and subscribers are loosely coupled

 Many-to-many interaction between pubs. and subs.

 Scalable scheme for large-scale systems

 Publishers do not need to know subscribers, and vice-versa

 Dynamic join and leave of pubs, subs

 (Topic and) Content-based pub/sub very expressive

 Filtered information delivered only to interested parties

Complex event Processing (CEP)

 Composite Event Processing (CEP)

 Events produce events after processing

 Example of CEP : Composite Event Detection (CED)

 Content-based pub/sub may not be expressive enough

 Potentially thousands of event types (primitive events)

 Subscribers interest: event patterns

 Composite Event Detectors (CED)

 Subscribe to primitive events and publish composite events

 Alternative Implementation … (need multicast communications)

Publisher

Publisher

Publisher

CEP

CEP

CEP

Publisher

Subscriber

Subscriber

Summary

 Middleware is an important abstraction

for building distributed systems

 Synchronous vs. asynchronous

communication

 Scalability, many-to-many communication

 Language integration

 Ubiquitous systems, mobile systems

1. Remote Procedure Call

2. Object-Oriented Middleware

3. Message-Oriented Middleware

4. Event-Based Middleware

Example : Next

MQTT Tutorial

