

Middleware and

Communication Patterns

Middleware

Operating System Comms

Network

Distributed Applications

Middleware

Operating System Comms

Network

Middleware

Operating System Comms

Network

(1) Remote Procedure Call (RPC)

 Masks remote function calls as being local

 Client/server model

 Request/reply paradigm usually implemented with message passing in RPC

service

 Marshalling of function parameters and return value

Caller RPC Service RPC Service Remote
Function

call(…)

1) Marshal args
2) Generate ID
3) Start timer 4) Unmarshal

5) Record ID

6) Marshal
7) Set timer

8) Unmarshal
9) Acknowledge

fun(…)

message

Properties of RPC

 Language-level pattern of function call

 easy to understand for programmer

 Synchronous request/reply interaction

 natural from a programming language point-of-view

 matches replies to requests

 built in synchronisation of requests and replies

 Distribution transparency (in the no-failure case)

 hides the complexity of a distributed system

Disadvantages and limitations of RPC

 Synchronous request/reply interaction

 tight coupling between client and server

 client may block for a long time if server loaded

 leads to multi-threaded programming at client

 slow/failed clients may delay servers when replying

 multi-threading essential at servers

 Distribution Transparency

 Not possible to mask all problems

 RPC paradigm is not object-oriented

 invoke functions on servers as opposed to methods on objects

fork(…)

join(…)

remote call

Do you know ?

 Any example for RPC based Middleware ?

 in your background …

 Example :

 See XML-RPC : http://www.tutorialspoint.com/xml-rpc/

 One kind of Web Service Middleware Communication paradigm is RPC

 See W3C consortium : http://www.w3schools.com/webservices/

(2) Object-Oriented Middleware (OOM)

 Objects can be local or remote

 Object references can be local or remote

 Remote objects have visible remote interfaces

 Masks remote objects as being local using proxy objects

 Remote method invocation

object A

proxy
object B

OOM OOM

skeleton
object B

object B

local remote

object
request
broker

/
object

manager

object
request
broker

/
object

manager

Properties of OOM

 Support for object-oriented
programming model

 objects, methods, interfaces,
encapsulation, …

 exceptions (were also in some RPC
systems)

 Synchronous request/reply
interaction

 same as RPC

 Location Transparency

 system (ORB) maps object
references to locations

Do you know ?

 Any example for OOM ?

 in your background …

 Examples …

Java Remote Method Invocation (RMI)

 Covered in Java programming

 Distributed objects in Java

public interface PrintService extends Remote {

int print(Vector printJob) throws RemoteException;

}

• RMI compiler creates proxies and skeletons

• RMI registry used for interface lookup

• Entire system written in Java (single-language system)

CORBA

 Common Object Request Broker Architecture

 Open standard by the OMG (Version 3.0)

 Language and platform independent

• Object Request Broker (ORB)

– General Inter-ORB Protocol (GIOP) for communication

– Interoperable Object References (IOR) contain object location

– CORBA Interface Definition Language (IDL)

• Stubs (proxies) and skeletons created by IDL compiler

CORBA IDL

 Definition of language-independent remote interfaces

 Language mappings to C++, Java, Smalltalk, …

 Translation by IDL compiler

 Type system

 basic types: long (32 bit),
long long (64 bit), short,
float, char, boolean,
octet, any, …

 constructed types: struct, union, sequence, array, enum

 objects (common super type Object)

 Parameter passing

 in, out, inout

 basic & constructed types passed by value

 objects passed by reference

typedef sequence<string> Files;

interface PrintService : Server {

void print(in Files printJob);

};

Advantages and Disadvantages of OOM

 Totally transparent distributed programming

 Synchronous request/reply interaction only

 So CORBA oneway semantics added Asynchronous Method Invocation (AMI)

 But implementations may not be loosely coupled

 Distributed garbage collection

 Releasing memory for unused remote objects

 OOM rather static and heavy-weight

 Unadapted for ubiquitous systems and embedded devices

(3) Message-Oriented Middleware (MOM)

 Communication using messages

 Messages stored in message queues

 message servers decouple client and server

 Various assumptions about message content

Client App.

local message
queues

Server App.

local message
queues

message
queues

Network Network Network

Message Servers

Properties of MOM

 Asynchronous interaction

 Client and server are only loosely coupled

 Messages are queued

 Good for application integration

 Processing of messages by intermediate message server(s)

 May do filtering, transforming, logging, …

 Networks of message servers

Java Message Service (JMS)

 API specification to access MOM implementations

 Two modes of operation *specified*:

 Point-to-point

 one-to-one communication using queues

 Publish/Subscribe

 cf. One pattern for Event-Based Middleware (ex . Java)

 JMS Server implements JMS API

 JMS Clients connect to JMS servers

 Java objects can be serialised to JMS messages

Disadvantages of MOM

 Poor programming abstraction (but has evolved)

 Rather low-level (cf. Packets)

 Request/reply more difficult to achieve, but can be done

 Message formats originally unknown to middleware

 No type checking (JMS addresses this – implementation?)

 Queue abstraction only gives one-to-one communication

 Limits scalability (JMS pub/sub – heavy implementation of event based

communications)

(4) Event-Based Middleware

 1 emitter – N receiver

 With broadcast communications (ex. UDP)

 With unicast communications or peer to peer (ex. TCP), multiple

communications are required

(4) Event-Based Middleware, ex.

Publish/Subscribe Pattern

 Publishers (advertise and) publish events (messages)

 Subscribers express interest in events with subscriptions

 Event Service notifies interested subscribers of published events

 Events can have arbitrary content (typed) and name/value pairs

subscribe

Event Service

(event-broker

network)

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

publish

publish

publish

subscribe

subscribe

notify

notify

notify

Properties of Publish/Subscribe

 Asynchronous communication

 Publishers and subscribers are loosely coupled

 Many-to-many interaction between pubs. and subs.

 Scalable scheme for large-scale systems

 Publishers do not need to know subscribers, and vice-versa

 Dynamic join and leave of pubs, subs

 (Topic and) Content-based pub/sub very expressive

 Filtered information delivered only to interested parties

Complex event Processing (CEP)

 Composite Event Processing (CEP)

 Events produce events after processing

 Example of CEP : Composite Event Detection (CED)

 Content-based pub/sub may not be expressive enough

 Potentially thousands of event types (primitive events)

 Subscribers interest: event patterns

 Composite Event Detectors (CED)

 Subscribe to primitive events and publish composite events

 Alternative Implementation … (need multicast communications)

Publisher

Publisher

Publisher

CEP

CEP

CEP

Publisher

Subscriber

Subscriber

Summary

 Middleware is an important abstraction

for building distributed systems

 Synchronous vs. asynchronous

communication

 Scalability, many-to-many communication

 Language integration

 Ubiquitous systems, mobile systems

1. Remote Procedure Call

2. Object-Oriented Middleware

3. Message-Oriented Middleware

4. Event-Based Middleware

Example : Next

MQTT Tutorial

