
Service oriented Middleware for IoT
SOM, based on ROA or SOA Approaches

Trends Web of Things

 Two kind of Approches

 Service oriented Architectures :

 ROA (DAO) : Ressource or data oriented

 SOA : Sevice oriented

Ressource Oriented

Architecture

RESTful Web Services

 REpresentational State Transfer

 Architecture inherent in all web based system since 1994, not explicitly described

as an architecture until later

 An architecture - not a set of standard

 Web Services is both an architecture and a set of standards

 Goal: To leverage web based standards to allow inter-application

communication as simply as possible

 Matches the ‘standard’ web interaction model

REST architecture

 Uses HTTP operations:

 GET = "give me some info" (Retrieve)

 POST = "here's some update info" (Update)

 PUT = "here's some new info" (Create)

 DELETE = "delete some info" (Delete)

 Typically exchanges XML documents

 But supports a wide range of other internet media types

 Example of client side REST request: GET /shoppingcart/5873

 Server must be able to correctly interpret the client request as there is no explicitly
defined equivalent to an interface definition

The standard Web architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(HTML)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(HTML doc)

HTTP response
Response

(HTML doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

The RESTful architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(XML)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(XML doc)

HTTP response
Response

(XML doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

REST Architecture

 Servers are stateless and messages can be interpreted without examining

history

 Messages are self-contained

 There is no such thing as a “service”.

 There are just resources which are accessed through URI

 URI = generalisation of URL

 Clients navigate through a series of steps towards a goal by following

hypertext links (GET) and submitting representations (POST).

ROA and Mashup

 Mashups is “A way to create new Web applications by combining existing Web

resources utilizing data and Web APIs” [Benslimane et al., 2008]

 ROA is Well-adapted for Mashups (Composite Web Applications)

 Well-adapted for Web Sensors Network (WSN)

 But lacks for non sensor device … like actuators …

Things - Physical

Objects

as data providers

Data sensors

REST – strong versus weak

 Pure REST should use ‘pure’ URI only

 E.g. GET /shoppingcart/5873

 Many REST implementations also allow parameter passing

 E.g. GET /shoppingcart/5873?sessionID=123

 Allowing parameter passing makes REST a lot more usable but blurs the
architectural principle of statelessness

 Indeed Data can be specific command like instruction code …

 But is it the purpose ?

 Is this not another way to rebuild a SOA stack ?

Service oriented

architecture (SOAP-WS)

SOA : Service oriented Architecture

 A service provides business functions to its consumer and in ISO 19119

[ISO/TC-211] it is defined as

 “ Distinct part of the functionality that is provided by an entity through

interfaces ”.

 SOAP based Web Service, the alternative

 Also called WS-* (for * recommendations, Cf. http://www.w3.org/)

WS-*architecture more than ROA

 SOAP+WSDL+UDDI defines a general
model for a web service architecture.

 SOAP: Simple Object Access Protocol

 WSDL: Web Service Description
Language

 UDDI: Universal Description and
Discovery Protocol

 Service consumer: User of a service

 Service provider: Entity that
implements a service (=server)

 Service registry : Central place where
available services are listed and
advertised for lookup

WS-* Models

 Stack of WS-standards

 The W3C and OASIS WS-stack provide a framework / toolbox for constructing

web service architectures

Disadvantages of Web Services

 Low-level abstraction

 leaves a lot to be implemented

 Interaction patterns have to be built

 one-to-one and request-reply provided

 one-to-many?

 No location transparency

