
Service oriented Middleware for IoT
SOM, based on ROA or SOA Approaches

Trends Web of Things

 Two kind of Approches

 Service oriented Architectures :

 ROA (DAO) : Ressource or data oriented

 SOA : Sevice oriented

Ressource Oriented

Architecture

RESTful Web Services

 REpresentational State Transfer

 Architecture inherent in all web based system since 1994, not explicitly described

as an architecture until later

 An architecture - not a set of standard

 Web Services is both an architecture and a set of standards

 Goal: To leverage web based standards to allow inter-application

communication as simply as possible

 Matches the ‘standard’ web interaction model

REST architecture

 Uses HTTP operations:

 GET = "give me some info" (Retrieve)

 POST = "here's some update info" (Update)

 PUT = "here's some new info" (Create)

 DELETE = "delete some info" (Delete)

 Typically exchanges XML documents

 But supports a wide range of other internet media types

 Example of client side REST request: GET /shoppingcart/5873

 Server must be able to correctly interpret the client request as there is no explicitly
defined equivalent to an interface definition

The standard Web architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(HTML)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(HTML doc)

HTTP response
Response

(HTML doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

The RESTful architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(XML)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(XML doc)

HTTP response
Response

(XML doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

REST Architecture

 Servers are stateless and messages can be interpreted without examining

history

 Messages are self-contained

 There is no such thing as a “service”.

 There are just resources which are accessed through URI

 URI = generalisation of URL

 Clients navigate through a series of steps towards a goal by following

hypertext links (GET) and submitting representations (POST).

ROA and Mashup

 Mashups is “A way to create new Web applications by combining existing Web

resources utilizing data and Web APIs” [Benslimane et al., 2008]

 ROA is Well-adapted for Mashups (Composite Web Applications)

 Well-adapted for Web Sensors Network (WSN)

 But lacks for non sensor device … like actuators …

Things - Physical

Objects

as data providers

Data sensors

REST – strong versus weak

 Pure REST should use ‘pure’ URI only

 E.g. GET /shoppingcart/5873

 Many REST implementations also allow parameter passing

 E.g. GET /shoppingcart/5873?sessionID=123

 Allowing parameter passing makes REST a lot more usable but blurs the
architectural principle of statelessness

 Indeed Data can be specific command like instruction code …

 But is it the purpose ?

 Is this not another way to rebuild a SOA stack ?

Service oriented

architecture (SOAP-WS)

SOA : Service oriented Architecture

 A service provides business functions to its consumer and in ISO 19119

[ISO/TC-211] it is defined as

 “ Distinct part of the functionality that is provided by an entity through

interfaces ”.

 SOAP based Web Service, the alternative

 Also called WS-* (for * recommendations, Cf. http://www.w3.org/)

WS-*architecture more than ROA

 SOAP+WSDL+UDDI defines a general
model for a web service architecture.

 SOAP: Simple Object Access Protocol

 WSDL: Web Service Description
Language

 UDDI: Universal Description and
Discovery Protocol

 Service consumer: User of a service

 Service provider: Entity that
implements a service (=server)

 Service registry : Central place where
available services are listed and
advertised for lookup

WS-* Models

 Stack of WS-standards

 The W3C and OASIS WS-stack provide a framework / toolbox for constructing

web service architectures

Disadvantages of Web Services

 Low-level abstraction

 leaves a lot to be implemented

 Interaction patterns have to be built

 one-to-one and request-reply provided

 one-to-many?

 No location transparency

