
A survey about context-aware middleware

Marco Bessi
Politecnico di Milano

Piazza Leonardo da Vinci 32
20133 Milano, Italy

marco.bessi@mail.polimi.it

Leonardo Bruni
Politecnico di Milano

Piazza Leonardo da Vinci 32
20133 Milano, Italy

leonardo1.bruni@mail.polimi.it

ABSTRACT
Context-aware systems represent extremely complex and het-
erogeneous systems. The need for middleware to bind com-
ponents together is well recognized and many attempts to
build middleware for context-aware system have been made.
One of the goal of this paper is to provide a general intro-
duction about the evolution of the middlewares and than to
proceed with an analysis of the requirements and the issues
for context-aware middleware. The paper also provides a
survey of some approach for this new kind of middleware.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces;
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed applications

Keywords
Middleware, context, context-awareness, reflection, ontol-
ogy, tuple-space, publish-subscribe

1. INTRODUCTION
Under the highly variable computing environment condi-
tions that characterize mobile platforms, it is believed that
existing traditional middleware systems are not capable of
providing adequate support for the mobile wireless comput-
ing environment. There is a great demand for designing
modern middleware systems that can support new require-
ments imposed by mobility; therefore, it is increasing the
importance of context-awareness in distributed applications.
Context-aware applications adapt its behavior to changes in
the environment and user requirements. The complexity of
developing context-aware applications makes middleware an
essential requirement.

In this paper, we evaluate the current state-of-the-art in
middleware for context-aware applications. The structure
of the paper is as follows. In section 2, we characterize

middleware and the evolution to its context-aware solution.
In 2.4 and 2.5, we analyze the requirements that context-
aware middleware should meet and the issues that we have
to handle. Than, in section 3, we review some approaches
to context-aware middleware and, for each one, we present
an existing model.

2. THE ROAD TO A “NEW GENERATION”
MIDDLEWARE

There are many different definition of “middleware” in the
literature; however we can assert that it plays an impor-
tant role in hiding the complexity of distributed applica-
tions. These applications typically operate in an environ-
ment that may include heterogeneous computer architec-
tures, operating systems, network protocols, and databases.
Middleware’s primary role is to conceal this complexity from
developers by deploying an isolated layer of APIs.

Middleware is defined as follows by Linthicum [16].

“Middleware is an enabling layer of software that
resides between the application program and the
networked layer of heterogeneous platforms and
protocols. It decouples applications from any de-
pendencies on the plumbing layer that consists of
heterogeneous operating systems, hardware plat-
forms and communication protocols”

2.1 Traditional middleware
Existing middleware technologies have been built adhering
to the metaphor of the black box. They succeeded in hiding
away many requirements introduced by distribution, such
as the heterogeneity and fault-tollerance, offering them an
image of the distributed system as a single integrated com-
puting facility. In other words, the presence of a middle-
ware to build distributed systems free developers from the
implementation of low-level details related to the network,
like concurrency control, transaction management, network
communication, in such a way they can focus on application
requirements.

It can be observed that the use of traditional middleware,
conceived for fixed distributed systems and on the idea of
a static context, in such complex and heterogeneous envi-
ronments is not always feasible (see figure 1). Traditional
distributed systems assume a stationary execution environ-
ment that contrast with the extremely dynamic scenario of



Figure 1: Main differences between distributed and
mobile environments.

the context-aware computing. Middlewares used in such sys-
tems hide low-level network details reaching a high level of
transparency to applications. Instead, in mobile environ-
ments the context is extremely dynamic and it cannot be
managed by a priori assumptions. Then, it is mandatory to
implement re-configuration techniques able to react to the
changes in the operating context.

2.2 Context-aware middleware
Modern distributed applications need a middleware that is
capable of adapting to environment changes.

Ngo et al. [15] defines context as:

“Context is any information about the circum-
stances, objects, or conditions by which a user
is surrounded that is considered relevant to the
interaction between the user and the ubiquitous
computing environment”.

Context-awareness involves acquisition of contextual infor-
mation, reasoning about context and modifying one’s behav-
ior based on the current context. A middleware for context-
awareness would provide support for each of these tasks.
It would also define a common model of context, which all
agents can use in dealing with context. It would also ensure
that different agents in the environment have a common se-
mantic understanding of contextual information.

Figure 2: Architecture of a context-aware system.

2.3 Is it necessary?
Now, a question came out: is it very necessary built an inter-
mediate layer for the context management or we can manage

the context directly on the applications or at operating sys-
tem level?

Different approaches have been suggested for promoting con-
text-awareness among agents. An approach is developing an
infrastructure or a middleware for context-awareness [21]. A
middleware would provide uniform abstractions and reliable
services for common operations. It would simplify the devel-
opment of context-aware applications. A middleware would
simplify the tasks of creating and maintaining context-aware
systems. It would also make it easy to incrementally deploy
new sensors and context-aware agents in the environment.
A middleware would be independent of hardware, operating
system and programming language. Finally, a middleware
would also allow us to compose complex systems based on
the interactions between a number of distributed context-
aware agents.
Adaptation at operating system level is platform-dependent
and requires a deep knowledge of the internals of the oper-
ating system. In addition, unwanted changes at this level
could be catastrophic.
Adaptation at the application level imposes an extra-burden
to the application developer and the adaptation mechanisms
developed at this level cannot be reused since they are ap-
plication specific.
In addition, both adaptation at operating system and adap-
tation at application level nullify the advantages listed above.
This leads us that adaptations should be handled at middle-
ware level.

2.4 Requirements
The middleware we are considering must address many of
the requirements of traditional distributed systems, such as
heterogeneity, mobility, scalability and tolerance for com-
ponent failures. In addition, it must protect user’s pri-
vacy. The large number of components that are present in
context-aware systems introduces a requirement for straight-
forward techniques for deploying, configuring and managing
networks of sensors [12] [14].

• Support for heterogeneity: hardware components
ranging from resource-poor sensors, actuators and mo-
bile client devices to high-performance servers must be
supported, as must a variety of networking interfaces
and programming language.

• Support for mobility: all components can be mobile
and the communication protocols must therefore sup-
port appropriately flexible forms of routing. Context
information may need to migrate with context-aware
components.

• Scalability: context processing components and com-
munication protocol must perform adequately in very
changing domains.

• Support for privacy: flows of context information
between the distributed components of a context-aware
system must be controlling according to user’s privacy
needs and expectations.

• Tolerance for component failures: sensors are li-
kely to fail in the ordinary operation of a context-aware
system; disconnection may also occur.



• Ease of deployment and configuration: it must
be easily deployed and configured to meet user and
environmental requirements.

• Dynamic reconfiguration: detecting changes in a-
vailable resources and reallocating them or notify the
application to change its behavior.

• Adaptivity: the ability of a system to recognize un-
met needs within its execution context and to adapt
itself to meet those needs.

• Asynchronous paradigm: decoupling the client and
server components and delivering multicast messages.

2.5 Issues
With the birth of context-aware middleware many issues are
came out, like security, balance of user control, sensing the
context and conflicts. In the following sections we examine
the balance of user control and the conflict problem about
the new middleware approach.

2.5.1 Balance of user control
In order to increase software autonomy, applications depend
on context information to dynamically adapt their behavior
to match the environment and user requirements. There-
fore, context-aware applications not only require middle-
ware for distribution transparency of components, but also
to support personalization and adaptation based on context-
awareness. However, context-aware applications may not al-
ways adapt as the user expects, and may cause users to feel
loss of control over the behavior of their applications [13].

Figure 3: Continuum of user control versus software
autonomy

How we can see in figure 3, at the leftmost end (A), users are
given full control over application behavior, and applications
have very little autonomy. Applications designed in this way
are the most interactive. Conversely, at the other end (C),
applications only require a small amount of user control.
Applications can also occupy any intermediate position on
the continuum (position B). The appropriate position along
the continuum will be dictated by the userŠs needs, situation
and expertise.

In traditional applications, the trade-off between user con-
trol and software autonomy has been fixed at design-time. In
contrast, context-aware applications may need to adjust the
balance of user control and software autonomy at run-time
by adjusting the level of feedback to users and the amount
of user input.

2.5.2 Conflicts
Applications dynamically change the set of resource that
middleware monitors on their behalf, the context configura-
tions they are interested into, and the behaviors they want

to adhere to. While doing so, applications may introduce
ambiguities, contradictions and logical inconsistencies. We
refer to these inconsistencies as conflicts [2].

When setting up application profiles, the following two basic
typologies of conflicts may be created.

• Intra-profile conflict: a conflict exists inside the
profile of an application running on a particular de-
vice. It identifies conflicts that are local to a middle-
ware instance.

• Inter-profile conflict: a conflict exists between the
profiles of applications running on different devices. It
identifies conflicts that are distributed among various
middleware instances.

As examples for intra- and inter-profile conflicts we can use
the conference scenario.
About intra-profile conflict, we assume that the talk reminder
service can be delivered using the following policies: silen-
tAlert policy (battery<15), (location=indoor) or vibraAlert
policy (location=indoor). Each of these policies require dif-
ferent amounts of resource to be used. Whenever a talk
reminder service has to be delivered, the application pro-
file is consulted to find out which policy to apply. Lets us
assume battery lower than 15 and the service is invoked in-
door, so are enabled both the policy.
About inter-profile conflict, we assume that peer can ex-
change messages using one of the following policies: plain-
Msg policy or encryptedMsg policy. Lets suppose that two
peer want to start a chat. So, they have to agree on a com-
mon policy to be applied to exchange messages. During the
lifetime of that chat the policy used may change to adapt
to the new context. However, all the chatting peers must
agree on the new policy to use. But, the context of the two
peer are different so, they can have a conflict between the
policies.

Conflict resolution mechanism
Whenever a service that incorporates a conflict is requested,
a conflict resolution mechanism has to be run to solve the
conflict and find out which policy to use to deliver the ser-
vice, otherwise application cannot execute. To design this
mechanism, the following requirements have to be consid-
ered.

• Dinamicity: never intra- nor inter-profile conflicts
can be detected and resolved statically. Due to the
complex nature of context, a stati conflict analysis
would produce an explosion in the context informa-
tion that must be checked, and would require a con-
sumption of resources that portable devices can not
bear. An external service on a powerful machine that
is contacted on-demand is not feasible either because it
would require a persistent connectivity (not granted).
As consequence, a dynamic solution is needed.

• Simplicity: the conflict resolution mechanism must
be simple. It must not consume resources that are
already scarce on a mobile device.



• Customization: on one hand, middleware should be
in charge of carrying out the conflict resolution pro-
cess in an automatic way as much as possible. On the
other hand, it must be possible for the applications
to customize the conflict resolution mechanism, thus
influencing which policy is chosen and applied, and
which others are discarded.

3. POSSIBLE APPROACHES
In this section we explore some possible approaches, in par-
ticular we discuss about object-, ontology- and data-oriented
approach. The reason of a such choice is that the first is a
clear example of how the middleware itself can evolve, while
the second is an example of how the middleware can support
the adaptation of the applications that run over it. The last
approach, instead, shows in which manner is possible to add
context-awareness to existent middleware.

3.1 Object-oriented
We start discussing the use of object oriented reflection as a
principle way to achieve a middleware that is adaptable and
extensible, and thus capable of supporting context-aware ap-
plications.

3.1.1 Reflection in a nutshell
Smith in [22] introduced the following reflection hypothesis:

In as much as a computational process can be
constructed to reason about an external world in
virtue of comprising an ingredient process (inter-
preter) formally manipulating representation of
that world, so too a computation process could be
made to reason about itself in virtue of compris-
ing an ingredient process (interpreter) formally
manipulating representations of its own opera-
tions and structures.

This hypothesis implies that the system has some represen-
tation of itself in terms of programming structures available
at run time. In a reflective system we call base-level the part
of the system that perform processing about the application
domain as in conventional systems (for a middleware it can
be considered as the services it provides through its inter-
faces), meta-level the part of the system whose subject of
computation is the system’s self representation, and meta-
object the entities that populate the meta-level. The process
through which the self-representation is created is known as
reification. A single meta-object is the result of a process of
reification of some aspects of the system.

3.1.2 General principles
The reflective architecture that we discuss was proposed
in [6] in which both base- and meta-level are modelled and
programmed according to an uniform object model whose
design is based on the following principles. First, the proce-
dural reflection is adopted because this approach has several
advantages over a more declarative approach [17]. Second,
RM-ODP Computational Model [1] is adopted and the com-
putational interfaces are described using CORBA-IDL. The

main features of this model are: i) objects can have mul-
tiple interfaces, ii) operational (based on method invoca-
tion semantics), stream (interactions by means of continu-
ous flows of data) and signal (support to one-way interac-
tions) interfaces are supported, iii) explicit bindings (local or
distributed) can be created between compatible interfaces.
Third, in order to restrict the effects of reflective compu-
tation to the reified objects, avoiding side-effects on other
parts of the platform, there is an association of meta-objects
with individual base-level objects of the platform. Finally,
the meta-space is structured as a number of closely related
but distinct meta-space models. The main feature of this
choice is to simplify the interface offered by meta-space by
maintaining a separation of concern between different sys-
tem aspects.

3.1.3 The structure of meta-space
As discussed above, the meta-level is divided into indepen-
dent and orthogonal meta-models (as shown in fig. 4), each
one representing a different aspect of the platform.

Figure 4: Overall structure of meta-space.

Encapsulation. The encapsulation meta-model relates to the
set of methods and associated attributes of a particular ob-
ject interface. It provides operations to add or remove meth-
ods and attributes.

Compositional. The compositional meta-model deals with
the way a composite object is composed, i.e. how its com-
ponents are inter-connected, and how these connection are
manipulated. The composition of an object is represented
as an object graph, in which the constituent objects are con-
nected together by edges representing local bindings. Note
that some objects in this graph can also be distributed. In
practice, the composition meta-model provides operation to
inspect and adapt the composition object, allowing view the
structure of the graph, access individual objects and insert
or remove component.

Environment. The environment meta-object is in charge of
the environmental computation of an object interface, i.e.



how the computation is done. It deals with message arrivals,
dispatching, marshalling, concurrency control, etc. Different
levels of access are supported. For example, a simple meta-
object may only deal with the arrival and dispatching of
message at the particular interface. A more complex meta-
object can add additional levels of transparency or control
over thread creation and scheduling. Note that the environ-
ment meta-model it’s represented as a composite object and
thus it’s possible to inspect and adapt it at the meta-meta-
level using compositional meta-model.

Resource Management. The resource meta-model is con-
cerned with both the resource awareness and resource man-
agement of objects in the platform. Resource provide an
operating system independent view of threads, buffer, etc.
Resource are managed by resource managers, which map
higher level abstraction of resource onto lower ones. A com-
plete description of the Resource Management Framework
can be found in [8].

3.1.4 Example
In this part an example is presented to illustrate the use
of the meta-models presented above to dynamically adapt
the services provided by the middleware. More precisely the
following example is concerned about the use of the com-
positional meta-model, but other examples can be found in
[6][5].

Figure 5 shows a two-levels binding between the interfaces
of two application objects that may be used, for example, to
transfer a continuous stream of media from one object to the
other with some constraint of QoS. At run-time, some ex-
ternal monitoring mechanism notices a drop in the network
throughput that might lead to the violation of constraints.
To avoid this we can reduce the actual amount of data to be
transfered inserting compression and decompression filters
at both sides of the binding.

Figure 5: Adaptation using the compositional meta-
model.

As the picture shows, the compositional meta-object (meta-
obj) maintains a representation of the binding configuration
(the object graph). The QoS monitor can invoke the oper-
ations provided by the compositional meta-model and any
results are reflected in the actual configuration of compo-
nents in the binding object. In this particular case, an object
named Filter1 (respectively Filter2) is inserted between the

interfaces of the Stub1 (respectively Stub2) and the primi-
tive binding. To operate this reconfiguration, the following
two calls are made to the meta-object:
meta_obj.addComponent(filter1,

(stub1.interf2, prim_binding.interf1))

meta_obj.addComponent(filter2,

(stub2.interf2, prim_binding.interf1))

3.2 Ontology-oriented
In this section, we discuss a Service-Oriented Context-Aware
Middleware (SOCAM) architecture [11] for building of con-
text-aware services based on a formal context model based
on ontology using OWL [23] to address issues including se-
mantic context representation, context reasoning and knowl-
edge sharing, context classification.

3.2.1 Advantages of an ontology-based approach
We start discussing the benefits that this kind of approach
involves. First of all, using an ontology-based approach al-
lows us to describe contexts semantically in a way which
is independent of the programming language or underlying
operating system. Moreover it enables formal analysis of do-
main knowledge. For example, context reasoning becomes
possible through first-order logic. There is another impor-
tant aspect that is made possible to achieve through the use
of an ontology: the sharing of common understanding of the
structure of context information. In other word, an appro-
priate context model should enables the common schemas
to be shared between different entities.

3.2.2 Design of context ontology
During the design of an appropriate context ontology several
features of the context information must be taken in account:
i) context has a great variety, i.e. context can describe any
information in any domain; ii) context information varies in
different sub-domains, e.g. we are more interested about de-
vices like a TV and DVD player in an home domain rather
than a PC in an office domain; iii) context information is in-
terrelated, e.g. the current status of a person (Showering) is
closely related to his location (Bathroom), the status of the
water heater (On) and the shower door’s status (Closed); iv)
context information is inconsistent, e.g. the bedroom loca-
tion sensor may sense a person is not present in his bedroom
whereas the camera senses his presence.
As discussed above, context has a great variety and thus it’s
unrealistic to be processed efficiently by pervasive devices
which have limited resource as CPU speed and memory. In
consequence of this observation a two-layer hierarchical ap-
proach was adopted for designing the context ontology as
shown in figure 6.

The context ontology is divided into common upper ontol-
ogy and several domain-specific ontologies. The former cap-
tures general concepts about the physical world in perva-
sive computing environments, is fixed once defined and will
be shared among different domains. The domain-specific
ontologies are a collection of low-level ontologies which de-
fine the details of general concepts and their properties in
each sub-domain. A low-level ontology can be dynamically
plugged into and unplugged from the upper ontology when
the environment is changed. The separation of domain re-
duce the burden of context processing and make it possible
to reason about context knowledge on pervasive devices.



Figure 6: Class hierarchy of the upper ontology.

3.2.3 Architecture
The SOCAM architecture (fig. 7), based on the context
model presented above, provide an efficient infrastructure
for building context-aware services in pervasive computing
environments. Note that is a clear example of how the mid-
dleware itself can be distributed, indeed it consists of several
components which act as independent service components.

Figure 7: Overview of the SOCAM architecture.

Context Providers. Context Providers abstract useful con-
text information from different sources and convert them to
OWL representation so that knowledge can be shared and
reused by other SOCAM components. The sources can be
external or internal. The external providers obtain context
information from external sources, e.g. a weather informa-
tion server, whereas the internal providers acquire contexts
directly from ubiquitous sensors located in a sub-domain.
In order to be discovered by other components, each con-
text provider needs to be registered into a service registry
by using the Service Locating Service mechanism.

Context Interpreter. Context Interpreter consists of Context
Reasoning Engines and Context KB (Knowledge Base). The
context reasoner provides deduced contexts based on direct
contexts and detect inconsistency in the context KB. Dif-
ferent inference rules can be specified and loaded into the
reasoning engines. The context KB provides services that
other components can invoke to query, add, delete or modify
context knowledge stored in the Context Database. In SO-
CAM, two kinds of reasoning are currently supported: ontol-

ogy reasoning (includes RDFS reasoning and OWL reason-
ing) and user-defined rule-based reasoning (provides forward
chaining, based on the standard RETE algorithm, back-
ward chaining rule engine, that uses a logic programming
engine similar to Prolog engines, and a hybrid execution
model, that performs reasoning by combining both forward-
chaining and backward-chaining engines).

Context-aware Services. Context-aware Services adapt the
way they behave according to the current context. To obtain
contexts, a context-aware service can either query a context
provider (by querying the service registry provided by the
service locating service) or listen for events sent by context
providers.

Service locating service. Service Locating Service provides a
mechanism through which users or applications can locate
and access to Context Providers and Context Interpreter.
The service locating service mechanism is widely discussed
in [24].

3.2.4 Performance evaluation
SOCAM middleware has been implemented in Java using
J2SE 1.3.1 and a prototype in a smart home environment
has been developed which consists of an OSGi-compliant res-
idential gateway (OSGI). The gateway was designed based
on Intel Celeron 600 MHz CPU with 256 MB memory. It
runs embedded Linux (kernel 2.4.17) operating system and
supports various wired and wireless network connections so
that various devices such as PCs, PDAs and network cam-
eras can be connected to the gateway. The context in-
terpreter has been implemented using Jena2-HP’s Seman-
tic Web Toolkit. The domain-specific ontologies in both
home and vehicle have been developed in OWL. The home-
domain ontology consists of 89 classes and 156 properties
and the vehicle-domain ontology consists of 32 classes and
57 properties. Based on the SOCAM middleware, a number
of context-aware services in a smart home environment have
been developed such as context-aware services for smart
phone, home energy saving services, happy dining room ser-
vices.

The context interpreter, which ran on the residential gate-
way, loaded both the upper ontology and a domain-specific
ontology and merged them together. The operations of load-
ing and merging involve checking the ontologies for inconsis-
tencies. As figure 8 shows, the overhead (the time for loading
and merging the upper ontology) is low and it can be further
reduced when a domain-specific ontology is extended.

In the prototype, the context interpreter takes about 521
ms to load 96 context instances from various internal con-
text providers and takes about 20 ms to merge these in-
stances with the ontology. The context reasoning process
takes about 1.9 s to derive high-level contexts. The context
interpreter was able to answer queries for derived contexts
at the average rate of a few milliseconds per query. The
result shows that the logic reasoning is a computationally
intensive process and it may become the bottleneck when it
is applied to pervasive computing domain. Figure 9 shows
the reasoning performance over difference scales of context
knowledge. The reasoning performance can be increased by
means of user-defined rule-based reasoning [11].



Figure 8: Overhead of the two-layer ontology design.

Figure 9: The reasoning performance.

3.3 Data oriented
For the “Data oriented” approach, we have studied two con-
text-aware middleware. The first approach is based on the
Publish-Subscribe with the add of context, created by “Po-
litecnico di Milano” [7]. The second approach is about tuple-
space, Tuples On The Air (TOTA), created by “Università
di Modena e Reggio Emilia” [18].

3.3.1 Context-Aware Publish-Subscribe
In most domains in which content-based publish-subscribe
finds its natural application, an effective communication pa-
radigm requires to take into account the situation in which
the information to be communicated is produced or con-
sumed. So, not only the informative content of messages
is relevant to determine the information flow, but also the
context in which this information has been produced and its
relationship with the context of the consumer. This need
for context-awareness is common in publish-subscribe appli-
cation. To convey this information into the published mes-
sages, the publisher encoded the context into the messages.
This approach is limiting and inefficient in routing messages
from publisher to subscribers.

Several publish-subscribe applications have a common char-
acteristic: both the subscribing and publishing of messages
are tied to the context in which producing and consuming
entities are. So, we want a new communication paradigm
that explicitly takes context into account.

Shortly, we examine some properties about why we need a
new communication paradigm on publish-subscribe:

• Matching inversion: In conventional content-based
publish-subscribe systems messages hold data, while
subscriptions hold constraints on these data. For the
publish-subscribe considered, we need to invert the
conventional matching process to consider constraints
embedded into messages and data embedded into sub-
scriptions.

• Efficiency: Managing context explicitly enables a dis-
patching strategy that limit the spreading of subscrip-
tions only to those areas of the routing network match-
ing publishers exists. This reduce the overhead of the
subscriptions and unsubscription processes and reduce
the time required to match messages.

• Separation of concerns: Usually the components
in charge of publishing messages and subscribing to
them differ from those in charge of detecting and com-
municating context changes. Tying the two concept
together might reduce the readability of code, forcing
interaction among parts of the application that should
be kept separate.

API
To get over the limitation of content publish-subscribe has
been proposed the following API. This interface introduce
context as a first class element into the publish-subscribe.
Each node n can set its current context by invoking the
setContext(c) operation and subscribe to messages matching
the content filter fmsg and coming from publishers whose
context matches the context filter fctx through the subscri-
be(fmsg; fctx); the unsubscribe(fmsg; fctx) operation does
the opposite. Additionally, the node n can publish messages
for subscribers whose context matches the context filter fctx

by invoking the publish(m; fctx) operation.

Shortest Path Context Forwarding protocol
To support large scale scenarios that involve hundreds of
nodes, the “Shortest Path Context Forwarding” (SPCF) pro-
tocol has been developed. The SPCF protocol define how
a set of brokers connected in an overlay network should
cooperate in order to efficiently provide the context-aware
publish-subscribe service to their clients. Messages are for-
warded along the shortest path tree rooted at the publisher,
using information about context and interests of downstream
clients to decide the branches to follow and those to prune.

Each broker runs a link state protocol to built its own view
of the dispatching network (without the client) and calculate
the shortest path trees (SPT) (i.e. Dijkstra) rooted to each
broker in the network. Then, message forwarding uses these
trees together with two tables (see figure 10):

• context table: it maps brokers (identifier) to the set
of contexts of their clients;

• content table: it stores, for each broker Bp, each con-
text cp among those of the clients attached to Bp, and



each neighbor N, the set of content filters and contexts
coming from attached to brokers that are downstream
along N in the SPT rooted at Bp.

Figure 10: Tables kept by each broker.

3.3.2 Tuples On The Air (TOTA)
“Tuples On The Air” (TOTA) is a novel middleware for sup-
porting adaptive context-aware application in dynamic net-
work. The key objectives of TOTA are:

• to promote uncoupled and adaptive interactions by lo-
cally providing application components with simple,
yet highly expressive, contextual information;

• to actively support adaptively by discharging applica-
tion components from the duty of dealing with network
and application dynamics.

To this end, TOTA relies on spatially distributed tuples, to
be injected in the network and propagated accordingly to
application-specific patterns. On the one hand, tuple prop-
agation patterns are dynamically re-shaped by the TOTA
middleware to implicitly reflect network and applications
dynamics, as well as to reflect the evolution of coordina-
tion activities. On the other hand, application components
have simply to locally “sense” tuples to acquire contextual
information, to exchange information with each other, and
to implicitly and adaptively orchestrate their coordination
activities.

TOTA is composed by a peer-to-peer network of possibly
mobile nodes, each running a local version of the TOTA
middleware. Each TOTA node holds references to a limited
set of neighboring nodes. The structure of the network, as
determine by the neighborhood relations, is automatically
maintained and updated by the node to support dynamic
changes.

TOTA tuples
In TOTA, distributed tuples used for both representing con-
textual information and enabling uncoupled interaction a-
mong distributed application components. Unlike traditional
shared data space models, tuples are not associated to a spe-
cific node of the network but they are injected in the network
accordingly to a specific pattern. TOTA tuples are able to
express not only messages to be transmitted between ap-
plication components but, more generally, some contextual
information on the distributed environment.

TOTA tuples are injected into the system from a particular
node, and spread hop-by-hop accordingly to their propaga-
tion rule. A TOTA tuple is define in terms of a “content”
and a “propagation rule” T = (C, P ). The content C is an
ordered set of typed fields representing the information car-
ried on by the tuple. The propagation rule P determines

how tuple is distributed and propagated in the network.
This includes determining the “scope” of the tuple and how
propagation can be effected by the presence or the absence
of other tuples in the system. Tuples are not necessarily
distributed replicas, so propagation rule can determine how
tuple’s content should change while is propagated.

Architecture
The TOTA middleware is constituted by three main parts:

• TOTA API: It is the main interface between the ap-
plication and the middleware. It provide functional-
ities to let the applications inject new tuples in the
system, to access the local tuple-space or to place sub-
scriptions in the event interface.

• Event interface: It is the component in charge of
asynchronously notifying the application about the in-
come of new tuple or about the fact a new node has
been connected or disconnected to the node’s neigh-
borhood.

• TOTA engine: It is the core of TOTA; it is in charge
of maintaining the TOTA network by storing the ref-
erences to neighboring nodes and to manage tuple’s
propagation by opening communication socket to send
and receive tuples.

Figure 11: The architecture of TOTA

TOTA is provided with a simple set of primitive operations
to interact with the middleware. The whole operation are:

• void inject(Tuple t): it is used to inject the tuple
passed as an argument in the TOTA network;

• ArrayList read(Tuple t): it returns a collection of
tuples locally present in the tuple space and matching
the template passed as parameter;

• ArrayList delete(Tuple t): it extract from the local
middleware all the tuples matching the template and
return them to the invoking component;

• void subscribe(Tuple t, String reaction): it asso-
ciates the execution of a reaction method in the compo-
nent in response to the occurrence of events matching
the template tuple passed as first parameter;



• void unsubscribe(Tuple t, String reaction): it
removes matching subscriptions.

These primitives rely on the fact that any event occurring
in TOTA can be represented as a tuple.

4. SUMMARY
We have discussed why the construction of context-aware
applications is difficult and indicated the support that soft-
ware engineers can expect from current middleware prod-
ucts to simplify this task. We defined the terms context and
context-awareness and than surveyed the literature in this
area, discussing current approaches to sense and model the
context.

5. REFERENCES
[1] G. S. Blair and J.-B. Stefani. Open Distributed

Processing and Multimedia. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[2] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
Context-aware reflective middleware system for mobile
applications. IEEE Transactions on Software
Engineering, 29:929–945, 2003.

[3] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth
College, November 2000.

[4] H. Chen, T. Finin, and A. Joshi. Using owl in a
pervasive computing broker, 2003.

[5] F. M. Costa, G. S. Blair, and G. Coulson.
Experiments with reflective middleware. In
Proceedings of the ECOOP’98 Workshop on Reflective
Object-Oriented Programming and Systems,
ECOOP’98 Workshop Reader. Springer-Verlag, 1998.

[6] F. M. Costa, H. A. Duran, N. Parlavantzas, K. B.
Saikoski, G. S. Blair, and G. Coulson. The role of
reflective middleware in supporting the engineering of
dynamic applications. In OORaSE, pages 79–98, 1999.

[7] G. Cugola, A. Margara, and M.Migliavacca.
Context-aware publish-subscibe: model,
implementation and evaluation.

[8] H. A. Duran and G. S. Blair. A resource management
framework for adaptive middleware, 2000.

[9] F. Eliassen, A. Andersen, G. S. Blair, F. Costa,
G. Coulson, V. Goebel, Øivind Hansen, T. Kristensen,
T. Plagemann, H. O. Rafaelsen, K. B. Saikoski, and
W. Yu. Next generation middleware: Requirements,
architecture, and prototypes. In In Proceedings of the
7 th IEEE Workshop on Future Trends in Distributed
Computing Systems, pages 60–65. IEEE Computer
Society Press, 1999.

[10] T. Gu, H. K. Pung, and D. Q. Zhang. A middleware
for building context-aware mobile services. In In
Proceedings of IEEE Vehicular Technology Conference
(VTC, 2004.

[11] T. Gu, H. K. Pung, and D. Q. Zhang. A
service-oriented middleware for building context-aware
services. Journal of Network and Computer
Applications, 28:1–18, 2005.

[12] S. Hadim, J. Al-Jaroodi, and N. Mohamed. Trends in
middleware for mobile ad hoc networks. JCM,

1(4):11–21, 2006.

[13] B. Hardian. Middleware support for transparency and
user control in context-aware systems. In MDS ’06:
Proceedings of the 3rd international Middleware
doctoral symposium, New York, NY, USA, 2006. ACM
Press.

[14] K. Henricksen, J. Indulska, T. McFadden, and
S. Balasubramaniam. Middleware for distributed
context-aware systems. In International Symposium
on Distributed Objects and Applications (DOA, pages
846–863. Springer, 2005.

[15] N. Hung, N. Ngoc, L. Hung, S. Lei, and S. Lee. A
survey on middleware for context-awareness in
ubiquitous computing environments.

[16] D. S. Linthicum. B2B application integration:
e-Business—enable your enterprise. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA,
USA, 2000.

[17] P. Maes. Concepts and experiments in computational
reflection. SIGPLAN Not., 22(12):147–155, 1987.

[18] M. Mamei, F. Zambonelli, and L. Leonardi. Tuples on
the air: a middleware for context-aware computing in
dynamic networks, 2003.

[19] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime:
A coordination model and middleware supporting
mobility of hosts and agents. ACM Transactions on
Software Engineering and Methodology, 15:279–328,
2006.

[20] H. Q. Ngo, A. Shehzad, S. Liaquat, M. Riaz, and
S. Lee. Developing context-aware ubiquitous
computing systems with a unified middleware
framework. pages 672–681. 2004.

[21] A. Ranganathan and R. H. Campbell. A middleware
for context-aware agents in ubiquitous computing
environments. In Middleware ’03: Proceedings of the
ACM/IFIP/USENIX 2003 International Conference
on Middleware, pages 143–161, New York, NY, USA,
2003. Springer-Verlag New York, Inc.

[22] B. C. Smith. Procedural reflection in programming
languages. PhD thesis, MIT, Cambridge, Mass., 1982.
Available as MIT Laboratory of Computer Science
Technical Report 272.

[23] M. K. Smith, C. Welty, and D. L. McGuinnes. Web
Ontology Language (OWL) guide, August 2003.

[24] T. G. Xiao, H. C. Qian, J. K. Yao, and H. K. Pung.
An architecture for flexible service discovery in
octopus. In Computer Communications and Networks,
2003. ICCCN 2003. Proceedings. The 12th
International Conference on, pages 291–296, Oct.
2003.

[25] T. G. Xiao, X. H. Wang, H. K. Pung, and D. Q.
Zhang. An ontology-based context model in intelligent
environments. In In Proceedings of Communication
Networks and Distributed Systems Modeling and
Simulation Conference, pages 270–275, 2004.


