
A SURVEY OF CONTEXT-AWARE MIDDLEWARE

Kristian Ellebæk Kjær
Department of Computer Science

University of Aarhus
Åbogade 34

8200 Århus N, Denmark
email: argo@daimi.au.dk

Abstract

This paper provides a survey of a chosen set of context-
aware middleware systems, and categorises their properties
and use according to a taxonomy. An overview of each
system is provided, as well as descriptions of the different
properties.

Keywords

Middleware, Context-awareness.

1 Introduction

This paper presents a survey of context-aware middleware
systems. Based on the the surveyed systems, a taxonomy
for categorising properties of such systems has been cre-
ated. The taxonomy is based on the capabilities of the sys-
tems, based on what their individual authors find important.

This paper provides a short introduction to middle-
ware in section 1.1 and then introduce the taxonomy in sec-
tion 2. The systems are described in section 3.

1.1 Middleware

We assume a definition of middleware as software systems
which provide an abstraction layer between an operating
system and applications running in a distributed environ-
ment.

The role of middleware is to provide an additional
layer of abstraction suitable for a specific type of applica-
tions. The intended type of applications might vary form
any type of “distributed system”, or as narrow as “agents
in Java”. However, middleware is normally intended for
a specific type of distributed system, and even though a
given middleware systems claims to be suitable for general
distributed systems, underlying assumptions often implies
certain limitations for the usefulness of the system.

In traditional distributed systems, the goal of the mid-
dleware has been to hide heterogeneity and distribution by
providing ways of treating remote resources as if they were
local. In wired, static environment, this has proven use-
ful, but in dynamic, wireless environments it breaks down,

since applications often need to base decisions on informa-
tion about distribution and the environment. Instead, mid-
dleware systems for Pervasive Computing focus on provid-
ing suitable abstractions for dealing with heterogeneity and
distribution without hiding them, and in some cases even
provide information about distribution and heterogeneity as
context information.

1.2 Types of Context

To understand context-aware middleware, it is useful to un-
derstand different types of context. The most widely used
context information today is arguably location and prox-
imity. These are examples of context that is external to
the computer systems which use them, but internal con-
text, such as available disk space is useful, but often not
considered context, and thus not modelled as part of the
model of context. Other forms of context include informa-
tion collected by sensors, which can range from biometric
information to measuring the amount sunlight at a location.

2 Categorising Middleware

The categorisation is based on surveying existing context-
aware middleware. The surveyed systems are very differ-
ent and some are pure middleware while others are more
complete infrastructural systems offering services for man-
aging entire physical environments. The systems also vary
in what constitutes applications build with the system.

The systems are categorised according to the taxon-
omy depicted in figure 1. In the following sections, we
detail each of the major categories of the taxonomy.

Environment A middleware system makes explicit or
implicit assumptions about the environment it is to be used
in. Some middleware assume the existence of an infras-
tructure which offers services needed by the middleware
and applications. We say that these systems live in an in-
frastructure environment. Other systems only assume that
devices have some method of communication and does not
rely on external services. We say that systems build with
this kind of middleware is self-contained.



Figure 1. Taxonomy of Context-Aware Middleware showing major categories, sub categories, and sub-sub categories

Storage Some systems provide a context-aware data
store which order data based on context information, allow-
ing it to be retrieved based on certain context-parameters.
For example, some systems provide file systems where data
is ordered according to the current context. Other systems
provide centralised storage facilities for context informa-
tion, allowing applications to retrieve it.

Reflection Reflective mechanisms are mostly known in
programming languages, but some middleware systems of-
fer reflection of different parts of the systems. In such
systems, the reflective mechanisms are typically available
through meta-data the applications can access. The meta-
data can represent either

• the application itself,

• the middleware,

• or context information.

Closely tied with meta-data is the concepts of reifica-
tion and absorption. Reification is the process of represent-
ing entities as meta-data and absorption is the process of al-
tering the entities by altering their representation. That is,
that the entity described in the meta-data adapts to changes
in the meta-data.

Quality Quality is a measure of how well a service can
be performed or how good data is. In the case of context-
aware middleware quality is mostly concerned with quality
of service, how well a resource can be provided. However,
some systems provide quality measures of the offered con-
text.

Composition Some middleware do component compo-
sition based on contextual events. For example, entities

might be composed with all entities in their vicinity, or
composition might be changed if some context event oc-
curs.

Migration Some systems provide migration of entities.
Some of the systems merely provides mechanisms for mi-
grating running code when the application decides, possi-
bly based on context, while other systems migrate entities
automatically based on context. This is closely tied with
adaption (section 2, where different parts of the systems
adapts to context.

Adaption When context-information is available, sys-
tems can adapt to changes in the context. Different parts
might all use context in different ways, but most middle-
ware systems do not use context-information on all parts of
the system. Adaption to changes might happen in middle-
ware or in the applications. If adaption takes place at the
middleware level, there are three sub-categories:

• Transparent. The middleware reacts to changes in
context without the application being aware of it.

• Profile. The middleware receives a profile from the
application detailing what kind of service is is inter-
ested in. It is then the responsibility of the middleware
to adapt so that it can provide a service as close to the
requested as possible.

• Rules. Rules are typically of the form if a then b.
Rules are provided by either applications or by users,
and indicate what action the middleware should or
must take when a happens.

When adaption is the responsibility of the application,
the programmer is free to use context in any way imagin-
able. However, some middleware systems provide methods



for invoking certain actions in the application based on con-
text changes in the form of rules, typically with a call-back
to the application.

Other Aspects Besides the above, other aspects of
context-aware middleware are important for understanding
the different systems. These include:

• Basic entity. The basic entity in a system is the en-
tity which constitutes the application build on top of
the middleware. Some middleware systems are in-
tended for general purpose applications, but others in-
stead group existing applications or assume specific
programming paradigms.

• The underlying OS. In this context, OS should be un-
derstood very widely. All middleware systems run on
top of some sort operating systems, or support differ-
ent operating systems. It might also be the case that
some parts of the system runs on e.g. PDAs while the
infrastructure is based on services provided by web
applications, as in the case of Cooltown [16].

Other interesting aspects include fault tolerance, discon-
nected operation and context history.

3 Middleware Systems

Context-Aware Middleware systems have very different
characteristics. To better understand systems, we have ap-
plied the taxonomy introduced in section 2 to a number of
middleware systems to show its usefulness.

Table 1 provides an overview of the different systems,
and shows which parts of the taxonomy each of them sup-
port. The rest of this section describes each of these sys-
tems.

3.1 Aura

Aura [11, 13, 15, 20] is a task oriented system for in-
frastructural environments. It runs on top of an ordinary
desktop operating system, and explores the notion of per-
sonal aura, a system which supports the user in perform-
ing tasks. Services for management of tasks, applications,
and context are provided. Unlike most other context-aware
middleware, Aura does not support building applications,
but instead relies on existing applications to act as service
providers for services like text editing or playing sounds.

Tasks are controlled by a Task Manager, which han-
dles migration of tasks, while services are provided by an
Environment Manager. Tasks are abstract representations
of a collection of services comprising the task. When a
user moves from one environment to another, the represen-
tation of the task is moved, and service providers for the
task are instantiated at the new location.

Aura provides a Context Observer to manage context.
Context information is used to derive the intent of the user.
The context observer merely collects context, and reports

changes to the Task- and Environment Managers. Depend-
ing on the detail of the collected context, the Context Ob-
server might be able to derive the current task, location, and
intent of the user. The current task is used for proactively
loading the current task, while location is used to migrate
tasks e.g. from the home to the office of the user. The intent
is used for both tasks and location. If the user is working at
home, but have a meeting scheduled at 10am and leaves the
home computer, the Context Observer might derive that the
user is leaving for the office, and migrate the current task
without intervention from the user. If the Context Observer
is unable to derive the location or intention of the user, e.g.
because of insufficient sensors in the environment, the user
must explicitly indicate this to Aura.

3.2 CARMEN

CARMEN [3] is intended for handling resources in wire-
less settings assuming temporary disconnects. It uses prox-
ies, mobile agents residing in the same CARMEN environ-
ment as the user. If a user moves to another environment
the proxy will migrate using wired connections. Each mo-
bile user has a single proxy, which provides access to re-
sources needed by the user. When migrating, the proxy
makes sure that resources are also available in the new en-
vironment. This can happen by: moving the resources with
the agent, copying the resources, using remote references,
or re-binding to new resources which provide similar ser-
vices. The method is determined by inspecting the profile
of the device.

Each entity in CARMEN is described by a profile.
User profiles contains information about preferences, se-
curity settings, subscribed services etc. Device profiles de-
fine the hardware and software of devices. Service compo-
nent profiles define the interface of services and Site pro-
files group together the profiles which all belong to a single
location. Thus, context information in CARMEN describes
the entities which make up the system.

3.3 CARISMA

CARISMA [4, 5, 6]deals with adaption of middleware de-
pending on the needs of the applications.

Profiles for each application are kept as meta-data of
the middleware and consists of passive and active parts.
The passive parts define actions the middleware should take
when specific context events occurs, such as shutting down
if battery is low. The active information defines relations
between services used by the application and the policies
that should be applied to deliver those services. The ac-
tive part is thus only used when the application requests a
service.

Different environmental conditions may be specified,
which determine how a service should be delivered. At any
time, the application can use reflection to alter the profile
kept by the middleware through an XML representation.



Table 1. Categorisation of Context-Aware Middleware Systems.

Middleware E
nv

ir
on

m
en

t

St
or

ag
e

R
efl

ec
tio

n

Q
ua

lit
y

C
om

po
si

tio
n

M
ig

ra
tio

n

A
da

pt
io

n

In
fr

as
tr

uc
tu

re

Se
lf

-c
on

ta
in

ed

C
on

te
xt

D
at

a

C
on

te
xt

M
id

dl
ew

ar
e

A
pp

lic
at

io
n

R
es

ou
rc

es

C
on

te
xt

M
id

dl
ew

ar
e

A
pp

lic
at

io
n

T
ra

ns
pa

re
nt

Pr
ofi

le

R
ul

es

R
ul

es

Se
lf

Aura
√ √ √ √ √ √ √

CARMEN
√ √ √ √ √

CARISMA
√ √ √ √

Cooltown
√ √ √ √

CORTEX
√ √ √ √ √

Gaia
√ √ √ √ √ √ √

MiddleWhere
√ √ √ √

MobiPADS
√ √ √ √ √ √ √ √

SOCAM
√ √ √

To deal with conflicts between profiles, CARISMA
adopts a micro-economic approach [6], where a computing
system is modelled as an economy where consumers makes
a collective choice over a limited set of goods. In this case,
the goods are the policies used to provide services, not the
resources providing them. The middleware plays auction-
eer in a action protocol, where each application submits a
single, sealed bit on each alternative profile. The auction-
eer then selects the alternative which maximises the sum of
bids. To determine the bid each of the applications are will-
ing to pay, functions which translate from profile require-
ments to values are defined. Like profiles, these functions
may be changed at any time through reflection. This type
of protocol makes sense because CARISMA delivers the
same service to all participants.

3.4 Cooltown

The Cooltown project [2, 8] is intended to support wire-
less, mobile devices to interact with a web-enabled envi-
ronment. The basic principle is that devices, people, and
things have a web-presence identified by a URL, which
provides a “rich” interface to the entity. Users interact
with the web-enabled environment using PDAs to interact
with the available web-services. As such, Cooltown ex-
pects wireless Internet access when users interact with the
system. URLs are passed between devices in local device
to device interaction. E.g. a projector might receive a pre-
sentation by receiving a URL to the file.

Context in the system is closely tied to the physical
environment. For example, an infrared beacon at the en-
trance of a room will emit a URL which points to the page
of the room [2]. When a PDA loads this page, the PDA

acts as an interface to the room, thus changing behaviour
based on location context. Other types of context might
be used by web-applications by providing web-applications
with other context like time or activity. The main principle
in the collection of context is that it is provided by web-
clients. Depending on which sensors the clients haves, web
interfaces can adapt to the context they provide. Types of
context about the physical world includes [8]: where, when,
who, what, and how.

The context is integrated with a model of the physical
world, consisting of places, people and things, and rela-
tionships between them. Relationships include: Contains,
isContainedIn, isNextTo, and isCarriedBy, and the list is
extensible. Relationships are directional, so like hyperlinks
they can be navigated in one direction, making them suit-
able for presenting as web pages. Relationships have prop-
erties, and can be subtypes of other relationships. The state
of the model is updated automatically by sensing mecha-
nisms ranging from infrared beacons to GPS.

The main modules in the architecture are: Web Pres-
ence Manager, Description, Directory, Discovery modules,
Autobiographer, Observer, and Control.

Besides these modules, Cooltown offer tools to build
web-presence services (applications).

3.5 CORTEX

The CORTEX project [9, 22] project is concerned with re-
search other than context-aware middleware, but have pro-
posed a middleware to deal with

“Autonomous mobile physical objects that
cooperate with other objects, either mobile or
static, by capturing information in real-time



from sensors event messages propagated in a
MANET” [22].

The middleware is based on sentient objects. A sen-
tient object senses and views the behaviour of neighbouring
objects, reason about it, and manipulates physical objects
accordingly. Sentient objects dynamically discovers each
other, and share context information.

To support sentient objects, CORTEX provides a
middleware based on component frameworks, each of
which provides a service to the sentient objects: Publish-
Subscribe, Group Communication, Context, and QoS man-
agement.

Publish-Subscribe is used for discovery. While the
other component frameworks support communication, con-
text retrieval and inference, and arbitration of resource al-
location.

The resulting middleware is configured at deployment
time and can be reconfigured at run-time through a reflec-
tive API to adapt to changes in the environment.

3.6 Gaia

The Gaia Operating Systems [19, 18]is intended to be a
meta-operating system. That is, a distributed middleware
system providing functionality similar to an operating sys-
tem. Gaia builds on the notion of an active space, coordi-
nating heterogeneous devices in a physical space, typically
a single room. Like operating systems, it provides: pro-
gram execution, I/O operations, file-system access, com-
munications, error detection, and resource allocation.

Program execution is supported by the component
manager core, which allows any application to upload
components to any node of execution in the active space.
I/O operations are supported by device drivers on each
node, and the functionality is exported to the rest of the ac-
tive space using distributed objects. Gaia utilises the Con-
text File-System, which stores files based on representation
of the context. Both synchronous and asynchronous com-
munication is supported through RPC and events. Applica-
tions can register for event notification in case of errors,
and react accordingly. Finally, Gaia manages resources
throughout the active space.

Gaia is structured like traditional filesystems with a
kernel providing the necessary services and applications
build with a application framework on top.

Gaia differentiates between location, context, and
events and although they can all be seen as different kinds
of context, they are handled by different components. Con-
text is collected by context providers and higher level con-
text, such as activity, can be inferred from low level context.
An additional presence service deals with which entities are
present in an active space. Four basic types of entities are
supported: application, service, device, and person.

Context is represented by first-class predicates and
more complex context is represented by first-order logic
operations, such as and and or. Applications are notified

of changes in context through events, and can react accord-
ingly.

3.6.1 Context File System

The Context File System [18] builds a virtual hierarchy
based on context-information tags on files and presents a
directory structure based on context predicates. For exam-
ple, files associated with the context location=room-031
&& present=Esben can be retrieved by entering the direc-
tory /location:/room-031/present:/Esben.

The Context File Systems is build with a single server
governing the namespace, while actual files are imported
into the active space using existing distributed file systems,
such as NFS.

3.7 MiddleWhere

MiddleWhere [17] provides advanced location information
to applications and incorporates a wide range of location
sensing techniques in a model for location. Location in-
formation originates in Location Providers and is stored in
a spatial database. A reasoning engine uses the location
information from different providers to determine location
and a location service uses the spatial database and the rea-
soning engine to provide location with a certain probability.

The location model is hierarchical and deals with
three different kinds of location: points, lines, and poly-
gons. Each is represented by coordinates and a symbolic
name. Location is represented as GLOBs (Gaia LOcation
Byte-string). For example, a desk could be represented
as Building1/3/338/Desk1 or as Building1/3/338/(2,4,0),
meaning that Desk1 in room 338, floor 3 of Building 1 is
located at coordinates (2,4,0) with respect to the coordinate
system of the room. The room will have coordinates with
respect to the floor, the floor with respect to the building,
and the building with respect to global coordinates. In this
case, the desk is represented by a point. Polygons are used
for representing rooms, hallways or spaces within rooms,
while lines can be used for representing doors between two
rooms.

3.7.1 Quality of Location Information

The systems deals with quality of the location infor-
mation. The quality is measured according to resolu-
tion,confidence, and freshness. Resolution differs widely
between different location sensing techniques. For exam-
ple, a person using a card-reader to enter a room will tell the
system that the person is somewhere inside the room while
GPS has a resolution down to perhaps 10 meters. An RF
badge might have a resolution of 1 meter. Confidence is a
measure of how precise the sensor is in terms of probability
that the object is within the sensed area. This probability
originates in the sensors which register the object and in the
case of multiple sensors, the information is fused to yield a
single value. Freshness is based on the time since the last



sensor reading, and each type of sensor has an associated
temporal degradation function which, based on freshness,
degrades the confidence in the information.

3.8 MobiPADS

MobiPADS [7] is a middleware system for mobile environ-
ments. The principle entity is Mobilets, which are entities
that provide a service, and which can be migrated between
different MobiPADS environments. Each mobilet consists
of a slave and a master. The slave resided on a server, while
the master resides on a mobile device. Each pair cooper-
ate to provide a specific service. Services are composed
by chaining them together in specific order, and the slave
mobilets on the server are nested in the same order. This
provides reconfiguration based on different requirements.

MobiPADS is concerned with internal context of the
mobile devices, which is used to adapt to changes in the
computational environment. Thus, context types include:
processing power, memory, storage, network devices, bat-
tery etc. Each of these have several subtypes, e.g. size and
free_space for memory and storage. Mobilets are provided
with changes through context events, which they subscribe
to. Higher order context is derived by an Environment Mon-
itor, which subscribe to event sources and has the same
characteristics as other event sources.

Adaption takes place in either the middleware based
on system profiles, or by letting mobilets adapt to the events
they receive. Based on the requirements in the profile, the
service chains can be reconfigured to deal with e.g. a con-
strained environment, based on programmer provided alter-
natives service chains. Applications have access to reflec-
tive interfaces for context, service configuration, and adap-
tion strategies, and can change them to obtain a different
service from the middleware.

3.9 SOCAM

SOCAM [12] is based on the idea of using ontologies to
model context. The model is then used by an interpreter
to reason about context. The SOCAM architecture con-
sists of: Context Providers, Context Interpreters, a Context
Database, a Service Location Service, and Context-aware
Mobile Services. Context Providers provide external or in-
ternal context, which can be used by the mobile services di-
rectly or by Context Provider to provide higher-order con-
text. Externally, the Context Interpreter acts as a Context
Provider. Context is represented as instances of the ontol-
ogy model.

The Context Interpreter consists of a Context Rea-
soner, and a Context Database, which contains instances
of the current ontology, either from users or Context
Providers. The context is updated by a triggering mech-
anism with different intervals. Context Providers register
with the Service Location Service, thus allowing Mobile
Services to locate them. The Mobile Services can obtain
context either by querying the located Context Providers, or

by registering for specific events. SOCAM supports rules
for specifying which methods should be invoked on events.
The rules are predefined and loaded into the Context Rea-
soner.

3.9.1 Representation of Context

SOCAM represents context as a formal ontology as pred-
icates in OWL. The middleware supports reasoning about
context, so that high level context can be derived from ob-
served context by the Context Interpreter. The ontologies
are either a generalised ontology, or a domain specific on-
tology which is “bounded” with the generalised ontology,
or “re-bounded” if the context changes. The domain spe-
cific ontology may, for example, be re-bounded if the con-
text shifts from an office location to a car. It is the respon-
sibility of the Service Locating Service to load new context
ontologies when applications ask for location context.

4 Related Work

Most middleware system have an, implicit or explicit, no-
tion of types of context. Some explicitly categorises con-
text, and uses the categorisation for dealing with different
kinds of context. Others have an implicit notion of con-
text types, illustrated by letting different parts of the sys-
tem deal with different kinds of context, sometimes without
even considering it context, e.g. Roman et al [18].

A recent survey of context-aware systems by Baldauf
and Dustdar [1] introduce a layered architecture for under-
standing context-aware systems, but does not focus specif-
ically on middleware, or present existing systems in very
much detail.

Gaddah and Kunz [10] provide a survey of differ-
ent middleware paradigms targeted at Mobile Computing
. However, they do not describe context-aware systems
in very much detail, and describe context-awareness as
a separate paradigm from e.g. reflective and tuple-space
based middleware systems, even though some context-
aware middleware systems use these paradigms to provide
context information and integration. As described in this
paper, it is possible to use these mechanisms for actually
implementing context-awareness. Especially reflection has
been used for supporting adaption to changes in context.

Strang and Popien [21] have surveyed modelling of
context, describing key-value, graphical, object oriented,
logic based, and ontology based models, but they do not
describe middleware systems.

Henricksen et al [14] provide an overview of the state-
of-the art of context-aware systems. They survey five dif-
ferent systems, and compare them in terms of requirements
of context-aware systems. However, they restrict them-
selves to looking at general systems which spans multi-
ple layers of a proposed layered architecture, consisting of
application components at the top layer, decision support
tools, context repositories, context processing components,



and context sensors and actuators at the bottom layer. A
general middleware system is defined as a system which
supports general context, and not e.g. just location data. In
contrast, we also survey properties of less general systems.

5 Concluding Remarks

This paper has provided a survey of context-aware middle-
ware systems and a taxonomy for categorising them. The
taxonomy is founded in the capabilities of the surveyed sys-
tems.

5.1 Future Work

It is of interest to survey additional context-aware middle-
ware systems to fit them into the presented taxonomy, or
even determine whether they fit the taxonomy. It can be
imagined that some additions or even changes might prove
useful, although we believe the existing taxonomy will fit
most systems. Systems which have not yet been fitted
into the taxonomy includes: Capnet, EasyLiving, MiLaN,
one.world, Oxygen, and countless others.

Additional work on understanding types of context
might also be useful, especially if coupled with research in
models of context to determine what types of context can
be represented in a given model.

5.2 Conclusion

The current state-of-the-art of context-aware middleware
explores quite different approaches to support pervasive
and mobile computing based on context information. All
of the middleware systems provide some method of adapt-
ing to changes in the context, and methods for collecting
context, but otherwise use different entities and have dif-
ferent focus. We believe that no single middleware system
is appropriate for all settings, so an understanding of what
existing systems do is useful for choosing how to create
or select a middleware system for a specific need, and this
survey provides a starting point for understanding the pos-
sibilities.

References

[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A sur-
vey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing, forthcoming,
2004.

[2] J. Barton and T. Kindberg. The Cooltown user expe-
rience. Technical report, Hewlett Packard, February
2001.

[3] P. Bellavista, A. Corradi, R. Montanari, and C. Ste-
fanelli. Context-aware middleware for resource man-
agement in the wireless internet. IEEE Transactions
on Software Engineering, 29(12):1086–1099, 2003.

[4] L. Capra. Mobile computing middleware for context-
aware applications. In ICSE ’02: Proceedings of
the 24th International Conference on Software Engi-
neering, pages 723–724, New York, NY, USA, 2002.
ACM Press.

[5] L. Capra, W. Emmerich, and C. Mascolo. Reflective
middleware solutions for context-aware applications.
Lecture Notes in Computer Science, 2192:126–133,
2001.

[6] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
context-aware reflective middleware system for mo-
bile applications. IEEE Transactions on Software En-
gineering, 29(10):929 – 45, 2003/10/.

[7] A. Chan and S.-N. Chuang. Mobipads: a reflec-
tive middleware for context-aware mobile comput-
ing. IEEE Transactions on Software Engineering,
29(12):1072 – 85, 2003/12/.

[8] P. Debaty, P. Goddi, and A. Vorbau. Integrat-
ing the physical world with the web to enable
context-enhanced services. Technical report, Hewlett-
Packard, September 2003.

[9] H. A. Duran-Limon, G. S. Blair, A. Friday, P. Grace,
G. Samartzisdis, T. Sivahraran, and M. WU. Context-
aware middleware for pervasive and ad hoc environ-
ments, 2000.

[10] A. Gaddah and T. Kunz. A survey of middleware
paradigms for mobile computing. Technical Report
SCE-03-16, Carleton University Systems an d Com-
puting Engeneering, July 2003.

[11] D. Garlan, D. Siewiorek, A. Smailagic, and
P. Steenkiste. Project Aura: Toward Distraction-Free
Pervasive Computing. IEEE Pervasive computing,
1(2):22–31, April–June 2002.

[12] T. Gu, H. K. Pung, and D. Q. Zhang. A middleware
for building context-aware mobile services. In Pro-
ceedings of IEEE Vehicular Technology Conference,
May 2004.

[13] U. Hengartner and P. Steenkiste. Protecting access to
people location information. In D. Hutter, G. Müller,
W. Stephan, and M. Ullmann, editors, SPC, volume
2802 of Lecture Notes in Computer Science, pages
25–38. Springer, 2003.

[14] K. Henricksen, J. Indulska, T. McFadden, and S. Bal-
asubramaniam. Middleware for distributed context-
aware systems. In R. Meersman, Z. Tari, M.-S. Hacid,
J. Mylopoulos, B. Pernici, Ö. Babaoglu, H.-A. Jacob-
sen, J. P. Loyall, M. Kifer, and S. Spaccapietra, edi-
tors, OTM Conferences (1), volume 3760 of Lecture
Notes in Computer Science, pages 846–863. Springer,
2005.



[15] G. Judd and P. Steenkiste. Providing contextual infor-
mation to pervasive computing applications. In PER-
COM ’03: Proceedings of the First IEEE Interna-
tional Conference on Pervasive Computing and Com-
munications, page 133, Washington, DC, USA, 2003.
IEEE Computer Society.

[16] T. Kindberg and J. Barton. A web-based no-
madic computing system. Technical report, Hewlett-
Packard, August 2000.

[17] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. H.
Campbell, and M. D. Mickunas. Middlewhere:
A middleware for location awareness in ubiquitous
computing applications. In H.-A. Jacobsen, editor,
Middleware, volume 3231 of Lecture Notes in Com-
puter Science, pages 397–416. Springer, 2004.

[18] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt. A middleware infras-
tructure for active spaces. IEEE Pervasive Comput-
ing, 1(4):74 – 83, 2002/10/.

[19] M. Román, C. K. Hess, R. Cerqueira, A. Ran-
ganathan, R. H. Campbell, and K. Nahrstedt. Gaia: A
Middleware Infrastructure to Enable Active Spaces.
IEEE Pervasive Computing, pages 74–83, Oct–Dec
2002.

[20] J. P. Sousa and D. Garlan. Aura: An architectural
framework for user mobility in ubiquitous comput-
ing environments. In WICSA 3: Proceedings of the
IFIP 17th World Computer Congress - TC2 Stream /
3rd IEEE/IFIP Conference on Software Architecture,
pages 29–43, Deventer, The Netherlands, The Nether-
lands, 2002. Kluwer, B.V.

[21] T. Strang and C. L. Popien. A context modeling sur-
vey, September 2004.

[22] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair,
P. Okanda, A. Friday, and H. Duran-Limon. A
context-aware middleware for applications in mobile
ad hoc environments. In MPAC ’04: Proceedings of
the 2nd workshop on Middleware for pervasive and
ad-hoc computing, pages 107–110, New York, NY,
USA, 2004. ACM Press.


