
Service oriented Middleware for Iam

« FIND » Layer
SOM, based on ROA or SOA Approaches

Reference : Service-oriented middleware: A survey Jameela Al-Jaroodi, Nader

Mohamed, Journal of Network and Computer Applications, Volume 35, Issue 1,

January 2012, Pages 211–220, Collaborative Computing and Applications

Middleware and Service oriented

Concepts

 Service-oriented Middleware* is a kind of middleware based on the Service

Oriented Architecture (SOA) paradigm that supports the development of

distributed software systems in terms of loosely coupled networked services.

 In SOA, networked resources are made available as autonomous software

services that can be accessed without knowledge of their underlying

technologies.

 Key feature of SOA is that services are independent entities, with well-

defined interfaces, which can be invoked in a standard way, without requiring

the client to have knowledge about how the service actually performs its

tasks.

(*) A Perspective on the Future of Middleware-based
Software Engineering, Valérie Issarny, Mauro Caporuscio,
Nikolaos Georgantas, Workshop on the Future of Software

Engineering : FOSE 2007, 2007, Minneapolis, United States.
pp.244-258, 2007, https://hal.inria.fr/inria-00415919

https://hal.inria.fr/inria-00415919

Challenges for the « FIND » Layer

Middleware and Service oriented

Concepts

 The SOA style is structured around
three key architectural components:
(i) service provider, (ii) service
consumer, and (iii) service registry

 In SOA-based environments, the
Service-Oriented Middleware (SOM)
is in charge of enabling the
deployment of services and
coordination among the three key
conceptual elements that
characterize the SOA style.

 Popularity of service oriented
computing is mainly due to its Web
Service instantiation.

Trends Web of Things or Web Service for

Device

 Two kind of Approches

 Service oriented Architectures :

 ROA (DAO) : Ressource or data oriented

 Commnication pattern between service consumer and provider is based on shared URL

 Principle : Ressources as URL like hyperlinks in a classical Web approach

 SOA : Service oriented

 Communication pattern between service consumer and provider is RPC

 Principle : RPC using SOAP protocol over HTTP

Ressource Oriented

Architecture

RESTful Web Services

 REpresentational State Transfer

 Architecture inherent in all web based system since 1994, not explicitly described

as an architecture until later

 An architecture - not a set of standard

 Web Services is both an architecture and a set of standards

 Goal: To leverage web based standards to allow inter-application

communication as simply as possible

 Matches the ‘standard’ web interaction model

 Ressources as URL like hyperlinks in a classical Web approach

REST architecture

 Uses HTTP operations:

 GET = "give me some info" (Retrieve)

 POST = "here's some update info" (Update)

 PUT = "here's some new info" (Create)

 DELETE = "delete some info" (Delete)

 Typically exchanges XML documents

 But supports a wide range of other internet media types

 Example of client side REST request: GET /shoppingcart/5873

 Server must be able to correctly interpret the client request as there is no explicitly
defined equivalent to an interface definition

The standard Web architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(HTML)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(HTML doc)

HTTP response
Response

(HTML doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

The RESTful architecture

W
e

b
 S

e
rv

e
r

HTTP POST URL 3
PO

(XML| JSON)

HTTP GET request URL 1

HTTP responseURL to submitted PO

Parts

List

Part

Data

PO

HTTP response
Response

(XML doc | JSON doc)

HTTP response
Response

(XML doc| JSON doc)

HTTP GET request URL 2

Copyright © [2005]. Roger L. Costello, Timothy D. Kehoe.

REST Architecture

 Servers are stateless and messages can be interpreted without examining

history

 Messages are self-contained

 There is no such thing as a “service”.

 There are just resources which are accessed through URI

 URI = generalisation of URL

 Clients navigate through a series of steps towards a goal by following

hypertext links (GET) and submitting representations (POST).

ROA and Mashup

 Mashups is “A way to create new Web applications by combining existing Web

resources utilizing data and Web APIs” [Benslimane et al., 2008]

 ROA is Well-adapted for Mashups (Composite Web Applications)

 Well-adapted for Web Sensors Network (WSN)

 But lacks for non sensor device … like actuators …

Things - Physical

Objects

as data providers

Data sensors

REST – strong versus weak

 Pure REST should use ‘pure’ URI only

 E.g. GET /shoppingcart/5873

 Many REST implementations also allow parameter passing

 E.g. GET /shoppingcart/5873?sessionID=123

 Allowing parameter passing makes REST a lot more usable but blurs the
architectural principle of statelessness

 Indeed Data can be specific command like instruction code …

 But is it the purpose ?

 Is this not another way to rebuild a SOA stack ?

Service oriented

architecture (SOAP-WS)

SOA : Service oriented Architecture

 A service provides business functions to its consumer and in ISO 19119

[ISO/TC-211] it is defined as

 “ Distinct part of the functionality that is provided by an entity through

interfaces ”.

 Also called WS-* (for * recommendations, Cf. http://www.w3.org/)

 SOAP based Web Service, the alternative

 RPC using SOAP protocol over HTTP

Sample SOAP RPC Message

 <Envelope> est la racine

 <Header>, <Body> et <Fault> sont les enfants :

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<soap:Header>

... Header information...

</soap:Header>

<soap:Body>

... Body information...

<soap:Fault> ...Fault information...

</soap:Fault>

</soap:Body>

</soap:Envelope>

WS-*architecture more than ROA

 SOAP+WSDL+UDDI defines a general
model for a web service architecture.

 SOAP: Simple Object Access Protocol

 WSDL: Web Service Description
Language

 UDDI: Universal Description and
Discovery Protocol

 Service consumer: User of a service

 Service provider: Entity that
implements a service (=server)

 Service registry : Central place where
available services are listed and
advertised for lookup

WS-* Models

 Stack of WS-standards

 The W3C and OASIS WS-stack provide a framework / toolbox for constructing

web service architectures

Disadvantages of Web Services

 Low-level abstraction

 leaves a lot to be implemented

 Interaction patterns have to be built

 one-to-one and request-reply provided

 one-to-many?

 No location transparency

Challenges for Dynamicity in the

« FIND » Layer

Service searching

and advertising
contrac

t

Dynamicity

 Distributed dynamic Research and Discovery

 Appearance and Disappearance management

 Allow contextual research and discovery

Service

producer

Service

consumer
Interaction

Service

broker

Service Discovery Protocols

 Multicast DNS/DNS-SD: Apple’s protocol

 Multicast DNS: uses API similar to unicast DNS

 SLP: IETF proposed standard

 Supported by HP, Novell, Sun Microsystems, Oracle

 SSDP: Microsoft’s protocol

 Uses HTTP notifications (see bellow), used since XP

 WS-Discovery: Defined by OASIS

 Latest defined protocol, used in DPWS (see bellow)

Traditional Interactions: Invocations

 “Classical” way to interact between services

 Request-Response mechanism

Service

producer

Service

consumer

Request

Response

Service searching

and advertising
contrac

t

Reactivity

 “New way” of interacting: Eventing interaction model

 Based on publish/subscribe design pattern

 Asynchronous messaging (based on push mode)

Service

producer

Service

consumer

Subscription

Event

notification

Service searching

and advertising
contrac

t

Example of Technologies on Device :

UPnP & dPWS

UPnP : Universal Plug and Play

 Control Point

 The client which discover and control UPnP servers

 Device

 The server (receive actions)

 A physical device can be twice (CP and Device)

Network Internet Network2Network1
NAT NAT

Bridge

Device2

Servic

e

Servic

e
Device1

Servic

e

Control Point

Device3

Service

Control Point

Example of UPnP Device

Communications

Network

Device

Description

Events generated

by the device

Events notification

Eventing

Event

subscription

Control

Control

Request

Action

Request

Control

Response

Action

Response

Device

Advertisements

over SSDP channel

Discovery

Discovery

Search

Addressing

DHCP Auto-IP

UPnP Stack and Protocols

Descriptio

n

XML

Controling

SOAP

Eventing

GENA

Presenting

HTML

Discoverin

g

SSDP

Addressing

DHCP /

Auto IP

HTTP

TCP

IP

UDP

HTTPU/MU

UPnP Device Architecture

UPnP Forum Working Commitee

UPnP Vendor

DPWS : Device Profile for Web Services

 DPWS[1]: Same goal as UPnP (UPnP v2)

 But without backward compatibility

 Using or defining standards

 WSDL, WS-Discovery, WS-Eventing, …

 Approved as OASIS standard on 30, june 2009

 All or some parts of DPWS already included in Vista, Micro .NET, Windows CE,

…

http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

DPWS Stack and Protocols

 Only based on standards

 SOAP 1.2,

 XML,

 XML Schema,

 WSDL 1.1,

 WS-Addressing,

 WS-Transfer,

 WS-Policy,

 WS-Security,

 WS-MetadataExchange,

 WS-Discovery

 WS-Eventing

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/WS-Addressing
http://en.wikipedia.org/wiki/WS-Transfer
http://en.wikipedia.org/wiki/WS-Policy
http://en.wikipedia.org/wiki/WS-Security
http://en.wikipedia.org/wiki/WS-MetadataExchange
http://en.wikipedia.org/wiki/WS-Discovery
http://en.wikipedia.org/wiki/WS-Eventing

DPWS implementations emerged with

the help of Research Projects

 European Research Initiative ITEA

 SIRENA project (2003-2005)

 SOA4D: SOA for Devices (Java and C Stack)

 WS4D: Web Services for Devices (Java, Java ME and C Stack)

 SODA project (Service Oriented Device and Delivery Architecture) (2006-2008)

 EU Research Project

 SOCRADES (2006-2009) composed by heavyweights like ABB, SAP, Schneider

Electric, and Siemens

http://www.soa4d.org/
http://www.ws4d.org/

Using DPWS

 Also Microsoft implementations

 Micro .NET framework

 .NET framework (.NET 4.0)

 Included since Vista (WSDAPI)

 But…

 For the moment, the 3 main implementations (SOA4D, WS4D, Microsoft) of DPWS

do not communicate with other ones…

 So everybody is a standard !

UPnP vs DPWS

UPnP DPWS

Addressing
DHCP,

AutoIP
DHCP, AutoIP

Discovery SSDP WS-Discovery

Description UDA Schema WSDL 1.1

Control
SOAP 0.9,

1.1
SOAP 1.2

Eventing GENA WS-Eventing

Presentation HTTP, HTML HTTP, HTML

