
IAm and the

« COMPOSE »

layer
Lecturer : Ass. Prof. Jean-Yves Tigli

http://www.tigli.fr

at Polytech of Nice - Sophia Antipolis University

Email : tigli@polytech.unice.fr

11/01/2017 1

http://www.tigli.fr/
mailto:tigli@polytech.unice.fr

Service Composition

 Problem: more than one service might be needed to
achieve a given objective

 All such services need to interact seamlessly to achieve
the objective

 Composite Web Services

 Individual components implemented by different services
and located at different locations

 Execute in different contexts and containers

 Need to interact to achieve an objective

 Benefits

 Services can be reused

 Access to high-level complex services

11/01/2017 2

Service Composition an

Orchestration (contd.)

11/01/2017 3

Service Composition as a

Choreography (contd.)

11/01/2017 4

Service Composition

 Different Approaches

 Ad-Hoc : Mashup Static composition

 By hand

 BPEL4WS

 Language based (control flow) :

 Ex : BPEL4WS

 Others for Web Service for Device :

 Event Driven (close to Data Flow but react to event
appearance)

 Ex. : Event Driven Component based Model : LCA and SLCA
(Wcomp)

11/01/2017 5

Another Example

: Event-driven

Composition

Through Components Assemblies

11/01/2017 6

Overview

 Introduction

 LightWeight Component Model

 LCA (Wcomp) Component Model, for ubiquituous

computing

11/01/2017 7

What is a Component?

 “A software component is a software element that

conforms to a component model, and can be

independently deployed and composed without

modification according to a composition standard.”

 Component Model

 Interaction Standards

 Clearly Defined Interface

 Composition Standards

 Describe how components can be composed into larger

structures

 Substitutions

11/01/2017 8

CBSE Definition

 Developing new software from pre-built components.

 Attempt to make an association between SE and other

engineering disciplines.

 Advantages of CBSE

 Management of Complexity

 Reduce Development Time

 Increased Productivity

 Improved Quality

11/01/2017 9

More on Trust

 Components come in several forms

 Binary

 Source Code

 Need a Certification Standard

 Tests

 Environments

 => Formal Validation and Model Checking is a way to do

that (SCADE and synchronous programming)

11/01/2017 10

A way to

dynamicaly

compose services

with an event

driven approach
LCA Model

11/01/2017 11

LCA to compose services for

Devices
 Lightweight

Component

Architecture to

create service-

based

orchestration

for a specific

task

11/01/201
7

Environment

Device

Infrastructure

Services from the

infrastructure

Service orchestration,

application

12

WComp and Local

Composition (LCA)

 Main requirements for ubiquituous computing :

 Composition must be event driven

 At runtime ….

 Solution :

 Event based Local Composition : LCA (Lightweight

Component Model) for each application execution node.

11/01/2017 13

Main Features of LCA Model :

 Goal :

 Allow to compose Services for Device between them
towards a multiple devices ubiquitous application.

 Principles

 LightWeight Components Approach :

 Like OpenCom, JavaBeans, PicoContainer

 On the same execution node

 For each execution node, a container dynamically manage
the assembly of components

 Event-based interaction between components

 Blackbox LightWeight Components

11/01/2017 14

LCA Component Model

 Input : Methods

 C2.Method (param)

 Output : Events

 C1.Event (param)

 Internal Properties are associated with Getters and Setters

 C2.Set<Name>(<type>)

 <type> C2.Get<Name>()

11/01/2017 15

LCA, connectors

 Demo

 (Generated source code)

11/01/2017

simple

complex

Connectors

Simple Event based Connector

C1.Event (param) C2.Method (param)

Complex Event based Connector

C1.Event (param) C2.Method (C1.GetAProperty())

16

LCA Proxy components to

access to Services for Devices

11/01/2017

 Demo

Service for Device

Proxy Component

17

Build your own orchestration

set of operators / beans

 Demo

 If you need If, filters, … feel free ..

11/01/2017

Property

Method

Event source

18

Build your own

component with

C#

11/01/2017 19

BeanWComp .Net template

using System;

using System.ComponentModel;

using WComp.Beans;

namespace Bean4

{

 /// <summary>

 /// Description rsume de Class1.

 /// </summary>

 [Bean(Category="MyCategory")]

 public class Class1

 {

// delegate implicite de void EventHandler(object sender, EventArgs e)

public event EventHandler MyEvent;

// graphiquement ce qui sera fait :

// MyEvent += new EventHandler(func)

// avec private void func(object sender, EventArgs e)

11/01/2017

 Events are based on « delegate » model (in C#)

Event

Category

20

BeanWComp .Net template

…

// Nom de la propriété avec minuscule

// variable de sauvegarde propriété

 protected int myprop = 1;

 //meta donnée : valeur par défaut propriété

 [DefaultValue(1)]

// déclaration propriété : public <type> Nom

 public int Myprop

 {

 get

 {

 return myprop;

 }

 set

 {

 if (myprop < 1)

 {

 throw new ArgumentException("positif !");

 }

 // mot clef value

 myprop = value;

 }

 }

…

11/01/2017

 Propriétés

Property

21

BeanWComp .Net template

// méthodes

 public void MyStep(int val1, int val2)

 {

 if (myprop >= max)

 {

 myprop=1;

 MyEvent(this, null);

 }

 else

 myprop++;

 }

11/01/2017

 Méthodes

Method

22

Annex Delegates and

Events in C#
C# .NET Software Development

11/01/2017 23

Delegate types

 A delegate declaration defines a new type

 Delegates are similar to function pointers

 Delegate types are derived from

System.MulticastDelegate

11/01/2017 24

Simple Delegate Command

Pattern

11/01/2017

Delegate Host Class
(Publisher)

Exposed Delegate

Knows when the event
happens but doesn’t
know what to do about
it

Delegate User Class
(Subscriber)

Knows what to do
when an event
happens but doesn’t
know when

Subscribing Method

The Observer Pattern or .NET Event Model

25

Two reasons to use Delegates

 When you’re not sure what should happen when an

event occurs

 GUI events

 Threading situations

 Callbacks

 Command Pattern

 To keep your interface clean

 Looser coupling

11/01/2017 26

Defining and using Delegates

 three steps:

 Declaration

 Instantiation

 Invocation

11/01/2017 27

Delegate Declaration

 namespace some_namespace

 {

 delegate void MyDelegate(int x, int y);

11/01/2017

Delegate Type Name

28

Delegate Instantiation

 delegate void MyDelegate(int x, int y);

class MyClass

{

private MyDelegate myDelegate = new MyDelegate(SomeFun);

public static void SomeFun(int dx, int dy)

{

}

}

11/01/2017

Invocation Method

Invocation Method
name (no params
or perens)

29

Delegate-Method

Compatibility

 A Method is compatible with a Delegate if

 They have the same parameters

 They have the same return type

11/01/2017 30

Delegate Invocation

11/01/2017

class MyClass

{

private MyDelegate myDelegate;

public MyClass(MyDelegate myDelegate)

{

this.MyDelegate = myDelegate;

}

private void WorkerMethod()

{

int x = 500, y = 1450;

if(myDelegate != null)

myDelegate(x, y);

}

}

Attempting to invoke a delegate instance whose value is null results in an
exception of type
System.NullReferenceException.

31

Delegate’s “Multicast” Nature

 Delegate is really an array of function pointers

 Now when Invoked, mc.MyDelegate will execute all

three Methods

 Notice that you don’t have to instantiate the delegate

before using +=

 The compiler does it for you when calling +=

11/01/2017

mc.MyDelegate += new MyDelegate(mc.Method1);

mc.MyDelegate += new MyDelegate(mc.Method2);

mc.MyDelegate = mc.MyDelegate + new MyDelegate(mc.Method3);

32

The Invocation List

 Methods are executed in the order they are added

 Add methods with + and +=

 Remove methods with - and -=

 Attempting to remove a method that does not exist is not
an error

 Return value is whatever the last method returns

 A delegate may be present in the invocation list more
than once

 The delegate is executed as many times as it appears (in
the appropriate order)

 Removing a delegate that is present more than once
removes only the last occurrence

11/01/2017 33

Multicast example

11/01/2017

mc.MyDelegate = new MyDelegate(mc.Method1);

mc.MyDelegate += new MyDelegate(mc.Method2);

mc.MyDelegate = mc.MyDelegate + new MyDelegate(mc.Method3);

// The call to:

mc.MyDelegate(0, 0);

// executes:

// mc.Method1

// mc.Method2

// mc.Method3 (See Delegates Demo)

34

Events

 Events are “safe” delegates

 But they are delegates

 Restricts use of the delegate (event) to the target of a

+= or -= operation

 No assignment

 No invocation

 No access of delegate members (like GetInvocation List)

 Allow for their own Exposure

 Event Accessors

11/01/2017 35

Event Accessors

11/01/2017

public delegate void FireThisEvent();

class MyEventWrapper

{

private event FireThisEvent fireThisEvent;

public void OnSomethingHappens()

{

if(fireThisEvent != null)

fireThisEvent();

}

public event FireThisEvent FireThisEvent

{

add { fireThisEvent += value; }

remove { fireThisEvent -= value; }

}

}

add and remove
keywords

(See Event Demo)

36

