
J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

1

Tutorial: MQTT (Message Queuing
Telemetry Transport)

1 MQTT introduction :

MQTT is a lightweight publish/subscribe messaging protocol. It is useful for use with low power sensors, but is

applicable to many scenarios.

1.1 Publish/Subscribe

The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub".

Multiple clients connect to a broker and subscribe to topics that they are interested in. Clients also connect to the

broker and publish messages to topics. Many clients may subscribe to the same topics and do with the information

as they please. The broker and MQTT act as a simple, common interface for everything to connect to.

1.2 Topics/Subscriptions

Messages in MQTT are published on topics. There is no need to configure a topic, publishing on it is enough. Topics

are treated as a hierarchy, using a slash (/) as a separator. This allows sensible arrangement of common themes to

be created, much in the same way as a filesystem. For example, multiple computers may all publish their hard drive

temperature information on the following topic, with their own computer and hard drive name being replaced as

appropriate:

 sensors/COMPUTER_NAME/temperature/HARDDRIVE_NAME

Clients can receive messages by creating subscriptions. A subscription may be to an explicit topic, in which case only

messages to that topic will be received, or it may include wildcards. Two wildcards are available, + or #.

+ can be used as a wildcard for a single level of hierarchy. It could be used with the topic above to get information

on all computers and hard drives as follows:

 sensors/+/temperature/+

As another example, for a topic of "a/b/c/d", the following example subscriptions will match:

 a/b/c/d +/b/c/d a/+/c/d a/+/+/d +/+/+/+

The following subscriptions will not match:

 a/b/c b/+/c/d +/+/+

can be used as a wildcard for all remaining levels of hierarchy. This means that it must be the final character in a

subscription. With a topic of "a/b/c/d", the following example subscriptions will match:

 a/b/c/d # a/# a/b/# a/b/c/# +/b/c/#

Zero length topic levels are valid, which can lead to some slightly non-obvious behavior. For example, a topic of

"a//topic" would correctly match against a subscription of "a/+/topic". Likewise, zero length topic levels can exist at

both the beginning and the end of a topic string, so "/a/topic" would match against a subscription of "+/a/topic", "#"

or "/#", and a topic "a/topic/" would match against a subscription of "a/topic/+" or "a/topic/#".

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

2

Tutorial: MQTT (Message Queuing
Telemetry Transport)

1.3 Quality of Service

MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the broker/client will try to ensure

that a message is received. Messages may be sent at any QoS level, and clients may attempt to subscribe to topics at

any QoS level. This means that the client chooses the maximum QoS it will receive. For example, if a message is

published at QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with QoS 0. If

a second client is also subscribed to the same topic, but with QoS 2, then it will receive the same message but with

QoS 2. For a second example, if a client is subscribed with QoS 2 and a message is published on QoS 0, the client will

receive it on QoS 0.

Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth requirements.

 0: The broker/client will deliver the message once, with no confirmation.

 1: The broker/client will deliver the message at least once, with confirmation required.

 2: The broker/client will deliver the message exactly once by using a four step handshake.

2 Mosquitto
Mosquitto is an open source (BSD licensed) message broker that implements the MQ Telemetry Transport protocol

version 3.1. MQTT provides a lightweight method of carrying out messaging using a publish/subscribe model. This

makes it suitable for “machine to machine” messaging such as with low power sensors or mobile devices such as

phones, embedded computers or microcontrollers like the Arduino.

2.1 Linux Ubuntu Computer
In the first part of this tutorial. You need to boot your computer on Linux or use a VMware workstation with Ubuntu

(See Appendix)

2.2 Installing Mosquitto

Mosquitto can be simply installed like a linux/ubuntu package

Exercice 1 : Install mosquitto from your package manager.

 sudo apt-get install mosquitto

Don’t forget to install also shell script commands clients

 sudo apt-get install mosquitto-clients

2.3 The server
The server listens on the following ports:

 1883 : MQTT, unencrypted

 8883 : MQTT, encrypted

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

3

Tutorial: MQTT (Message Queuing
Telemetry Transport)

 8884 : MQTT, encrypted, client certificate required

 8080 : MQTT over WebSockets, unencrypted

 8081 : MQTT over WebSockets, encrypted

The encrypted ports support TLS v1.2, v1.1 or v1.0 with x509 certificates and require client support to connect. In all

cases you should use the certificate authority file mosquitto.org.crt to verify the server connection. Port 8884

requires clients to provide a certificate to authenticate their connection. If you wish to obtain a client certificate,

please get it touch.

You are free to use it for any application, but please do not abuse or rely upon it for anything of importance. You

should also build your client to cope with the broker restarting.

Please don't publish anything sensitive, anybody could be listening.

2.4 Caveats
This server is provided as a service for the community to do testing, but it is also extremely useful for testing the

server. This means that it will often be running unreleased or experimental code and may not be as stable as you

might hope. It may also be. Finally, not all of the features may be available all of the time, depending on what testing

is being done. In particular, websockets and TLS support are the most likely to be unavailable.

In general you can expect the server to be up and to be stable though.

2.5 MQTT/Mosquitto Man pages and commands
For more information on MQTT, see http://mqtt.org/ or the Mosquitto MQTT man page:

http://mosquitto.org/man/

2.5.1 mosquitto — an MQTT broker

mosquitto [-c config file] [-d | --daemon] [-p port number] [-v]

2.5.2 mosquitto_pub

mosquitto_pub [-A bind_address] [-d] [-h hostname] [-i client_id] [-I client id

prefix] [-k keepalive time] [-p port number] [-q message QoS] [--quiet] [-r] [-S] {

-f file | -l | -m message | -n | -s } [[-u username] [-P password]] [--will-topic

topic [--will-payload payload] [--will-qos qos] [--will-retain]] [[{ --cafile

file | --capath dir } [--cert file] [--key file] [--ciphers ciphers] [--tls-

version version] [--insecure]] | [--psk hex-key --psk-identity identity [--

ciphers ciphers] [--tls-version version]]] [--proxy socks-url] [-V protocol-

version] -t message-topic

Exercice 2 : Test these examples using to console terminals: one for publishers and one for subscribers.

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

4

Tutorial: MQTT (Message Queuing
Telemetry Transport)

1. Publish temperature information to localhost with QoS 1:

 mosquitto_pub -t sensors/temperature -m 32 -q 1

2. Publish timestamp and temperature information to a remote host (here localhost for test) on a non-

standard port (here the standard one : 1883 for test !) and QoS 0:

 mosquitto_pub -h 127.0.0.1 -p 1883 -t sensors/temperature -m "1266193804 32"

3. Publish light switch status. Message is set to retain because there may be a long period of time between
light switch events:

 mosquitto_pub -r -t switches/kitchen_lights/status -m "on"

4. Send the contents of a file in two ways:

 mosquitto_pub -t my/topic -f ./data

 mosquitto_pub -t my/topic -s < ./data

Exercice 3 : intermittent network connections management

Because the mosquito broker is local for this tests, we can illustrate the management of intermittent connection with
MQTT stop and start. To test that you can use these shell commands:

Sudo service mosquitto stop

Sudo service mosquitto start

What happens?

2.5.3 mosquitto_sub

mosquitto_sub [-A bind_address] [-c] [-C msg count] [-d] [-h hostname] [-

i client_id] [-I client id prefix] [-k keepalive time] [-p port number]

[-q message QoS] [-R] [-S] [-N] [--quiet] [-v] [[-u username] [-P

password]] [--will-topic topic [--will-payload payload] [--will-qos

qos] [--will-retain]] [[{ --cafile file | --capath dir } [--cert file]

[--key file] [--tls-version version] [--insecure]] | [--psk hex-key --

psk-identity identity [--tls-version version]]] [--proxy socks-url] [-V

protocol-version] [-T filter-out...] -t message-topic...

Exercice 4 : Test these examples

Subscribe to temperature information on localhost with QoS 1:

o mosquitto_sub -t sensors/temperature -q 1

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

5

Tutorial: MQTT (Message Queuing
Telemetry Transport)

Subscribe to hard drive temperature updates on multiple machines/hard drives. This expects each machine to be
publishing its hard drive temperature to sensors/machines/HOSTNAME/temperature/HD_NAME.

o mosquitto_sub -t sensors/machines/+/temperature/+

Subscribe to all broker status messages:

o mosquitto_sub -v -t \$SYS/#

2.6 Remote Mosquitto MQTT server/broker (http://test.mosquitto.org)

2.6.1 D3 MQTT topic tree visualizer

http://test.mosquitto.org/sys/ allows to visualize the $SYS tree of the broker. See how the tree change dynamically.

2.6.2 Demo and manipulation on temperature gauge

http://test.mosquitto.org/gauge/ is an HTML5 canvas gauge for temperature

obtained from an MQTT subscribe.

A local process runs every 15 seconds to update the value by adding a random value

in the range +/-2 degrees.

Exercice 5 : Publish to the "temp/random" topic to change the gauge and to test
it :
mosquitto_pub -h test.mosquitto.org -t temp/random -m 23.0

Exercice 6 : Subscribe to the "temp/random" and see what happen as soon
temp/random changes :
mosquitto_sub -h test.mosquitto.org -t temp/random –v

Exercice 7 : Write a temperature profile in a file and publish it with time stamps.
Trace in another file, the change of the temperature through the client/subscribe.

Exercice 8 : Display and compare both files with gnuplot (install gnuplot if necessary).

BE CAREFUL!

To access to a standard remote server broker like test.mosquitto.org, the Mosquitto port mustn’t be filtered by your
Internet Gateway.

If you don’t find better solution, use a Smart Phone as an internet access point 4G/Wi-Fi. That works!

BE CAREFUL!

If you are working on Mac OS X, you must run mosquito explicitly like that:

/usr/local/sbin/mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf

http://test.mosquitto.org/sys/
http://test.mosquitto.org/gauge/

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

6

Tutorial: MQTT (Message Queuing
Telemetry Transport)

3 MQTT and Complex event processing (CEP)

Event processing is a method of tracking and analyzing (processing) streams of information (data) about things that

happen (events) and deriving a conclusion from them. Complex event processing, or CEP, is event processing that

combines data from multiple sources to infer events or patterns that suggest more complicated circumstances. The

goal of complex event processing is to identify meaningful events (such as opportunities or threats) and respond to

them as quickly as possible.

If you met some difficulties in programming MQTT client, you can use shell script with Mosquitto shell commands

to do these exercises.

Exercice 9 : Propose a CEP architecture using MQTT. To test it, implement a simple example that uses mosquito
with one publisher of an event with an integer value X, one subscriber waiting for an event with the value 2*X and a
complex event processing that transform event X in event 2*X.

One of the applications of CEP is CED (Composite Event Detection). CED is a way to implement multiple conditions
on multiple events to emit new events. For example Event condition action (ECA) is a short-cut for referring to the
structure of active rules in event driven architecture and active database systems. Such a rule traditionally consisted
of three parts:

 The event part specifies the signal that triggers the invocation of the rule

 The condition part is a logical test that, if satisfied or evaluates to true, causes the action to be carried out

 The action part consists of updates or invocations on the local data

Exercice 10 : Implement a CED process between publisher and subscriber client to apply a set of ECA rules on
input events occurrences, after evaluation of the conditions on separate data, to emit new events as actions.

Publisher

Publisher

Publisher

CEP

Publisher

Subscriber

CEP

CEP

Subscriber

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

7

Tutorial: MQTT (Message Queuing
Telemetry Transport)

Appendix 1: Installing Ubuntu in a VM on Windows

1. Download the Ubuntu iso (desktop not server)
and the free VMware Player.

2. Install VMware Player and run it, you’ll see
something like this:

3. Select “Create a New Virtual Machine”
4. Select “Installer disc image file” and browse to

the Ubuntu iso you downloaded.
You should see that it will use Easy Install – this takes

5. Enter your full name, username and password
and hit next

http://www.ubuntu.com/download/desktop
http://www.vmware.com/products/player/overview.html

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

8

Tutorial: MQTT (Message Queuing
Telemetry Transport)

6. Select the maximum disk size and type. Unless
you’re planning on some really CPU intensive
work inside the VM, select the “Split virtual disk
into multiple files” option. Hit next when you’re
happy with the settings.

7. This brings you to the confirmation page.
Click “Customize Hardware”

8. In the hardware options section select the
amount of memory you want the VM to use. In
this instance I’ve gone for 1.5GB out of the 8GB
installed in my laptop. Leave everything else as
it is and click Close.

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

9

Tutorial: MQTT (Message Queuing
Telemetry Transport)

9. This brings you back to the confirmation
page. Click Finish this time

10. You will probably be prompted to download VMware
Tools for Linux. Click “Download and Install” to continue

11. Wait for it to install

12. Ubuntu will then start to
install, so keep waiting (or do what I did
and go to bed!)

J.-Y. Tigli, G. Rocher, I3S – University of Nice Sophia Antipolis, 2016-2017

ENSI – Tunis - MQTT

J.-Y. Tigli, G. Rocher

Université de Nice – Sophia Antipolis

930, Route des Colles – B.P. 145 - 06903 Sophia Antipolis Cedex – France

Tél : +33 (0)4 92 96 50 50 – Fax : +33 (0)4 92 96 50 55

http://rainbow.i3s.unice.fr

10

Tutorial: MQTT (Message Queuing
Telemetry Transport)

13. When all is done you’ll be presented with
the Ubuntu login screen. So enter your
password and you’re on your way.

14. Click the clock in the top right to set
your time and date settings

15. Once you’ve set that up, you’re up and
running with Ubuntu in VMware Player on your
Windows machine.

