

Component based middleware and
service composition for ubiquitous

computing
Ass. Prof. Jean-Yves Tigli

tigli@polytech.unice.fr

www.tigli.fr
Ref : Component-based

Software Engineering

Ivica Crnkovic

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware

Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr
1

mailto:tigli@polytech.unice.fr
http://www.tigli.fr/

Next Step ….
1. Infrastructure : based on Web services for Device

2. Composition : based on CBSE

3. Self-Adaptation : using Aspects of Assembly (AA)

2012-2013 2

MASTER_INF
O_CORTE_IA

M_2013
component_
based_middl
eware Jean-

Yves tigli -

Dynamic
composition of

services

Infrastructure level
of Services for

Devices

1

2

Dynamic self-
adaptation of
compositions

3

Overview

• Introduction

• ACME Architectural Description Language

• Java Bean Component Model

• LCA (Wcomp) Component Model, for ubiquituous computing

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

3

What is a Component?

• “A software component is a software element that conforms
to a component model, and can be independently deployed
and composed without modification according to a
composition standard.”

• Component Model

– Interaction Standards
• Clearly Defined Interface

– Composition Standards
• Describe how components can be composed into larger structures

• Substitutions

[1],[2]

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

4

CBSE Definition

• Developing new software from pre-built components.

• Attempt to make an association between SE and other
engineering disciplines.

Advantages of CBSE
• Management of Complexity

• Reduce Development Time

• Increased Productivity

• Improved Quality

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

5

More on Trust

• Components come in several forms

– Binary

– Source Code

• Need a Certification Standard

– Tests

– Environments

• => Formal Validation and Model Checking is a way to
do that (SCADE and synchronous programming)

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

6

Disadvantages of CBSE

• Development of Components

• Lack of Components

• Component Maintenance Costs

• Sensitivity to changes

• Trust

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

7

General Model of CBSE

ADL - ACME

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

8

Architecture Definition
Languages

• ADLs primarily address the issues related to the early phases
of software engineering
– Design

– Analysis

• They identify a number of concepts, such as:
– Architecture, configurations, connectors, bindings, properties,

hierarchical models, style, static analysis and behavior.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

9

ACME Architectural Description
Language

• Components and Ports

• Connectors and Roles

• Systems and Attachments

• Representations and Bindings

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

10

Components and Ports

• Components
– Represent the computational elements and data stores of a system.

• Ports
– Are the points of interaction between a component and its

environment.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

11

Connectors and Roles

• Connectors
– Represent interactions between components such as method calls or

an SQL connection between a client and a database server.

• The interface of a connector is defined as a set of roles

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

12

Systems and Attachments

• The structure of a system is specified by a set of components,
a set of connectors, and a set of attachments.

• Attachment
– Links a component port to a connector role.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

13

Representations and Bindings

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

14

Fine grained Component

Or local Component

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

15

Fine-grained Component
Ex. JavaBean Model and Key Features

• "A Java Bean is a reusable software component that can be
manipulated visually in a builder tool ”.

• The Java Bean was designed for the construction of graphical
user interface (GUI).

• Explicitly tailored to interact in two different contexts:
– At composition time, within the builder tool.

– At execution time, with the runtime environment.

• Any Java class that adheres to certain conventions regarding
property and event interface definitions can be a JavaBean.

• Beans are Java classes that can be manipulated in a visual
builder tool and composed into applications.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -

tigli@polytech.unice.fr - www.tigli.fr
16

Interface of a Component

• This model defines four types of port:
– methods,

– properties,

– event sources (generate an event)

– event sinks called listeners (they receive event)

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

17

Implementation of a
Component

• Most bean components are implemented by a simple object
and naming convention

• A component factory is a class

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

18

Components Assembly

• Assembly is one of the key features of Bean.
– Composition tools (Bean Box)

• Different ways of assembling components are supplied.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

19

Fine grained Component
ex. .NET Model – Implementation

• A component (assembly) is made of modules, which are
traditional executable files (DLL).

• Modules cannot be assemblies, thus the .NET model is not
hierarchical.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

20

Framework : The Container
Approach

• Framework – a set of containers. Containers contains
components and provides a set of standard services (security,
events, persistence, life -cycle support)

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

21

A way to dynamicaly compose services

SLCA Model

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

22

LCA to compose services for
Devices

• Lightweight Component Architecture to create service-based
orchestration for a specific task

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

23 / 63

Environment

Device

Infrastructure

Services from the

 infrastructure

Service orchestration,

application

WComp and Local Composition
(LCA)

• Main requirements for ubiquituous computing :

– Composition must be event based

– At runtime ….

• Solution :

– Event based Local Composition : LCA (Lightweight
Component Model) for each application execution node.

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

24 / 63

Main Features of LCA Model :

• Goal :
– Allow to compose Services for Device between them towards a

multiple devices ubiquitous application.

• Principles
– LightWeight Components Approach :

• Like OpenCom, JavaBeans, PicoContainer

– On the same execution node

– For each execution node, a container dynamically manage the
assembly of components

– Event-based interaction between components

– Blackbox LightWeight Components

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -

tigli@polytech.unice.fr - www.tigli.fr
25

LCA, Bean WComp and ports

• Demo

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

26

Property

Method

Event source

BeanWComp .Net template

using System;

using System.ComponentModel;

using WComp.Beans;

namespace Bean4

{

 /// <summary>

 /// Description rsume de Class1.

 /// </summary>

 [Bean(Category="MyCategory")]

 public class Class1

 {

// delegate implicite de void EventHandler(object sender, EventArgs e)

public event EventHandler MyEvent;

// graphiquement ce qui sera fait :

// MyEvent += new EventHandler(func)

// avec private void func(object sender, EventArgs e)

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

27

• Events are based on « delegate » model (in C#)

Event

Category

BeanWComp .Net template

…

// Nom de la propriété avec minuscule

// variable de sauvegarde propriété

 protected int myprop = 1;

 //meta donnée : valeur par défaut propriété

 [DefaultValue(1)]

// déclaration propriété : public <type> Nom

 public int Myprop

 {

 get

 {

 return myprop;

 }

 set

 {

 if (myprop < 1)

 {

 throw new ArgumentException("positif !");

 }

 // mot clef value

 myprop = value;

 }

 }

…

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

28

• Propriétés

Property

BeanWComp .Net template

// méthodes

 public void MyStep(int val1, int val2)

 {

 if (myprop >= max)

 {

 myprop=1;

 MyEvent(this, null);

 }

 else

 myprop++;

 }

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

29

• Méthodes

Method

LCA, connectors

• Demo

• (Generated source code)

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

30

simple

complex

Connectors

Simple Event based Connector

C1.Event (param) C2.Method (param)

Complex Event based Connector

C1.Event (param) C2.Method (C1.GetAProperty())

LCA Proxy components to
access to Services for Devices

Service for Device

Proxy Component

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

31

• Demo

ANNEX DELEGATES AND EVENTS IN
C#

CNS 3260

C# .NET Software Development

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

32

Delegate types

• A delegate declaration defines a new type

• Delegates are similar to function pointers

• Delegate types are derived from System.MulticastDelegate

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 33

Simple Delegate Command
Pattern

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

Delegate Host Class
(Publisher)

Exposed Delegate

Knows when the event
happens but doesn’t
know what to do about
it

Delegate User Class
(Subscriber)

Knows what to do
when an event
happens but doesn’t
know when

Subscribing Method

The Observer Pattern or .NET Event Model

2012-2013 34

Two reasons to use Delegates

• When you’re not sure what should happen when an event
occurs
– GUI events

– Threading situations

– Callbacks

– Command Pattern

• To keep your interface clean
– Looser coupling

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 35

Defining and using Delegates

• three steps:
– Declaration

– Instantiation

– Invocation

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 36

Delegate Declaration

• namespace some_namespace

• {

• delegate void MyDelegate(int x, int y);

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

Delegate Type Name

2012-2013 37

Delegate Instantiation

delegate void MyDelegate(int x, int y);

class MyClass

{

 private MyDelegate myDelegate = new MyDelegate(SomeFun);

 public static void SomeFun(int dx, int dy)

 {

 }

}

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

Invocation Method

Invocation Method
name (no params
or perens)

2012-2013 38

Delegate-Method Compatibility

• A Method is compatible with a Delegate if
– They have the same parameters

– They have the same return type

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 39

Delegate Invocation

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

class MyClass

{

 private MyDelegate myDelegate;

 public MyClass(MyDelegate myDelegate)

 {

 this.MyDelegate = myDelegate;

 }

 private void WorkerMethod()

 {

 int x = 500, y = 1450;

 if(myDelegate != null)

 myDelegate(x, y);

 }

}

Attempting to invoke a delegate instance whose value is null results in an exception of type
System.NullReferenceException.

2012-2013 40

Delegate’s “Multicast” Nature

• Delegate is really an array of function pointers

• Now when Invoked, mc.MyDelegate will execute all three
Methods

• Notice that you don’t have to instantiate the delegate before
using +=
– The compiler does it for you when calling +=

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

mc.MyDelegate += new MyDelegate(mc.Method1);

mc.MyDelegate += new MyDelegate(mc.Method2);

mc.MyDelegate = mc.MyDelegate + new MyDelegate(mc.Method3);

2012-2013 41

The Invocation List

• Methods are executed in the order they are added

• Add methods with + and +=

• Remove methods with - and -=
– Attempting to remove a method that does not exist is not an error

• Return value is whatever the last method returns

• A delegate may be present in the invocation list more than
once
– The delegate is executed as many times as it appears (in the

appropriate order)

– Removing a delegate that is present more than once removes only the
last occurrence

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 42

Multicast example

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

mc.MyDelegate = new MyDelegate(mc.Method1);

mc.MyDelegate += new MyDelegate(mc.Method2);

mc.MyDelegate = mc.MyDelegate + new MyDelegate(mc.Method3);

// The call to:

mc.MyDelegate(0, 0);

// executes:

// mc.Method1

// mc.Method2

// mc.Method3 (See Delegates Demo)

2012-2013 43

Events

• Events are “safe” delegates
– But they are delegates

• Restricts use of the delegate (event) to the target of a += or -=
operation
– No assignment

– No invocation

– No access of delegate members (like GetInvocation List)

• Allow for their own Exposure
– Event Accessors

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 44

Event Accessors

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

public delegate void FireThisEvent();

class MyEventWrapper

{

 private event FireThisEvent fireThisEvent;

 public void OnSomethingHappens()

 {

 if(fireThisEvent != null)

 fireThisEvent();

 }

 public event FireThisEvent FireThisEvent

 {

 add { fireThisEvent += value; }

 remove { fireThisEvent -= value; }

 }

}

add and remove
keywords

(See Event Demo)

2012-2013 45

Library Delegates

• ThreadStart

• TimerCallback

• ASyncCallback

• EventHandler

• KeyPressEventHandler

• KeyEventHandler

• etc.

MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

2012-2013 46

References

• [1] Council, William T. and Heineman, George T., “Component-Based Software
Engineering.” Addison-Wesley: Upper Saddle River, 2001.

• [2] Pour, Gilda, “Component-Based Software Development approach: New Oppurtunities
and Challenges,” Proceedings of the 26th International Conference on Technology of Object-
Oriented Languages and Systems, 1998.

• [3] Crnkovic, Ivica, “Component-based Software Engineering – New Challenges in Software
Development,” in 27th Int. Conf. Information Technology Interfaces 2003, June 1-19, 2003,
Cavtat, Croatia.

• [4] Way, Ju An, “Towards Component-Based Software Engineering,” Proceedings of the eighth
annual consortium on Computing in Small Colleges Rocky Mountain conference, pg. 177-189,
Orem, Utah, 2000.

• [5] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, M. Riveill, “Lightweight Service Oriented
Architecture for Pervasive Computing” IJCSI International Journal of Computer Science Issues,
Vol. 4, No. 1, September 2009, ISSN (Online): 1694-0784, ISSN (Print): 1694-0814

2012-2013 MASTER_INFO_CORTE_IAM_2013 component_based_middleware Jean-Yves tigli -
tigli@polytech.unice.fr - www.tigli.fr

47

