
B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 164–182, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MUSIC: Middleware Support for Self-Adaptation in
Ubiquitous and Service-Oriented Environments

Romain Rouvoy1, Paolo Barone2, Yun Ding3, Frank Eliassen1, Svein Hallsteinsen4,
Jorge Lorenzo5, Alessandro Mamelli2, and Ulrich Scholz3

1 University of Oslo, 0316 Oslo, Norway
rouvoy@ifi.uio.no, frank@ifi.uio.no

2 HP Italy, 20063 Cernusco sul Naviglio, Italy
paolo.barone@hp.com, alessandro.mamelli@hp.com

3 European Media Laboratory GmbH, 69118 Heidelberg, Germany
yun.ding@eml-d.villa-bosch.de,

ulrich.scholz@eml-d.villa-bosch.de
4 SINTEF ICT, 7024 Trondheim, Norway
svein.hallsteinsen@sintef.no
5 Telefónica I+D, 47151 Valladolid, Spain

jorgelg@tid.es

Abstract. Self-adaptive component-based architectures facilitate the building of
systems capable of dynamically adapting to varying execution context. Such a
dynamic adaptation is particularly relevant in the domain of ubiquitous comput-
ing, where numerous and unexpected changes of the execution context prevail.
In this paper, we introduce an extension of the MUSIC component-based plan-
ning framework that optimizes the overall utility of applications when such
changes occur. In particular, we focus on changes in the service provider land-
scape in order to plug in interchangeably components and services providing
the functionalities defined by the component framework. The dynamic adapta-
tions are operated automatically for optimizing the application utility in a given
execution context. Our resulting planning framework is described and validated
on a motivating scenario of the MUSIC project.

Keywords: Adaptation planning, component-based architectures, self-
adaptation, service-oriented architectures.

1 Introduction

With the emergence of ubiquitous computing, common future scenarios will consist
in people moving around carrying mobile devices, which they use extensively to as-
sist both leisure and business related tasks. This will not only involve interactions
with services provided through the Internet, but also with services directly provided
by devices available in the surrounding environment.

For developers of mobile applications this is a very challenging scenario. Users’
movements in ubiquitous computing environments cause frequent and unexpected
changes in the execution context of their applications. For example, a mobile device is
frequently roaming, and its applications have to be dynamically adapted to remain

 MUSIC: Middleware Support for Self-Adaptation 165

useful under new network conditions. Such an adaptation requires the detection of
context changes, but also the selection of an application configuration that maintains a
satisfactory Quality of Service (QoS) in the new context. Furthermore, when services
become a part of the ubiquitous environment, both the availability and the quality of
the services on which the applications depend becomes a concern of the application
developer. There is therefore a need to dynamically discover services both when they
become available and when they disappear. Also, such applications need to embed
logic enabling them to reason about how and when to use a service available in the
surrounding, to select among service alternatives when there are more than one avail-
able, and to adapt when a service disappears. Such a self-adaptation process is gener-
ally complex and costly to implement. To achieve self-adaptation, developers can use
programming language features, such as conditional expressions, parameterization,
and exceptions. However, these approaches introduce complexity by intertwining
adaptation and application logic. Also, they make software evolution difficult. Con-
versely, approaches that use application independent middleware approaches for ad-
aptation relieve the applications from adaptation concerns [1].

In the MUSIC project, we follow the latter approach by seeking to separate the
self-adaptation concern from the business logic concern and delegate as much as
possible of the added complexity related to self-adaptation to generic middleware.
The adaptation process relies on the architecture model of the application, which
specifies its adaptation capabilities and its dependencies to context available at run-
time. In MUSIC, an application is modeled as a component framework, which defines
the functionalities that can be dynamically configured with conforming component
implementations. Thus, the purpose of an adaptation-planning framework is to evalu-
ate the utility of alternative configurations in response to context changes, to select a
feasible one (e.g., the one with highest utility) for the current context and to adapt the
application accordingly.

In this chapter, we propose a comprehensive extension of the MUSIC platform and
planning framework we initially sketched in [2]. Currently, MUSIC only supports the
adaptation of component-based architectures. The proposed extension enables the
self-adaptation of mobile and ubiquitous applications in the presence of Service-
Oriented Architectures (SOA). The planning middleware evaluates discovered remote
services as alternative configurations for the functionalities required by an applica-
tion. This means that the extended planning framework can support seamless configu-
ration of component frameworks based on both local and remote components as well
as services. In particular, components and services can be plugged in interchangeably
to provide the functionalities defined by the component framework. In case of ser-
vices, the planning framework deals directly with Service Level Agreement (SLA)
protocols supported by the service providers. In addition to that, we introduce in this
chapter a support for advertising services and associated service levels, in order to
satisfy dynamically incoming service requests. Hence, MUSIC applications can use
the MUSIC platform to share services with the environment.

In the remainder of this chapter, we first describe in section 2 the MUSIC approach
to planning-based adaptation for component-based applications. In section 3, we in-
troduce a motivating scenario for the support of SOA for self-adaptive applications in
a ubiquitous environment, as well as derive a set of requirements. Section 4 exposes
the MUSIC support for consuming and providing services in ubiquitous environ-
ments. Section 5 describes the integration of SOA into the MUSIC platform from an

166 R. Rouvoy et al.

implementation perspective, while section 6 provides a preliminary validation of our
approach by discussing how the requirements derived in section 3 are met by the
proposed design. In section 7, we discuss related work before concluding and pointing
out further work in section 8.

2 The MUSIC Approach to Self-Adaptation

Planning-based adaptation of a component-based application refers to the capability of
a system to adapt to changing user needs and operating conditions by exploiting
knowledge about its composition and Quality of Service (QoS) characteristics of its
constituting components [2,3,4,5,6]. In MUSIC this knowledge is provided in the form
of a QoS-aware model (cf. Figure 1), which describes the abstract composition, the
relevant QoS dimensions and how they are affected when varying the actual compo-
nent configuration. This model is exploited by the adaptation middleware to select,
connect, and deploy a configuration of Component Realizations providing the best
utility. The utility measures the degree of fulfillment of user preferences while optimiz-
ing device resource utilization [1,3]. The model describes the abstract composition as a
set of Roles collaborating through Ports, which represent either functionality provided
to or required from collaborating components. Properties and property predictor func-
tions associated with the ports define how the QoS properties and resource needs of
components are influenced by the QoS properties of the components they depend on. A
port has a Type defining the functionality represented by the port in terms of interfaces
and protocol. Component realizations implement ports and a component realization
can be used in a role if the ports match (same type). Component realizations are Atomic
or Composite. A Composite Realization is itself an abstract composition and allows for
recursive decomposition. Constraints are predicates over the properties of the constitut-
ing components of a composition, which restrict the possible combinations of compo-
nent realizations (e.g., configuration consistencies) [3,7].

The model is represented at runtime as plans within the middleware. A plan re-
flects a component realization and describes its ports and associated property

Fig. 1. Description of the MUSIC meta-model

 MUSIC: Middleware Support for Self-Adaptation 167

predictors as well as implicit dependencies on the hosting platform (e.g., platform
type and version). In the case of an atomic component realization, it also contains a
reference to the class, which realizes the component. In the case of a composite reali-
zation, the plan describes the internal structure in terms of roles and ports and the
connections between them. Variation is obtained by describing a set of possible alter-
native realizations of the roles.

Then, planning refers to the process of selecting the components that make up an
application configuration providing the best possible utility to the end-user. This
process will be triggered at start-up of the application and at run-time when the execu-
tion context suddenly changes. When such an adaptation process is triggered for a
particular type, the planning middleware iterates over the plans associated to the roles.
For each plan, it resolves the plan dependencies and evaluates the configuration suit-
ability to the current execution context by computing the Predicted Properties. The
predicted properties are input to the normalized utility function that computes the
expected utility of the evaluated application configuration [1,2,3,4,5]. The utility
function of an application is provided by the developer and is typically expressed as a
weighted sum of dimensional utility functions where the weights express user prefer-
ences (i.e., relative importance of a dimension to the user). A dimensional utility func-
tion measures user satisfaction in one property dimension.

An example model for an application assisting traveling on public transportation is
shown in figure 2. It is described as a collaboration of five roles. GUI presents a
graphical user interface on the device. Main embeds the application logic and binds
the different functionalities together. Main interacts with Route to find the shortest
route and the estimated travel time. It also uses Map to get localized maps and Loca-
tion to get the current location. The QoS properties used in the model are specified in
table 1. Property predictors for the application, specified as functions of the properties
of the components it consists of, are associated with the composition in figure 2. The
utility function assumes that the user always prefers high accuracy and low battery
consumption, while the relative weighting (w_acc, w_bat) will be extracted from the
user profile by the middleware.

Fig. 2. Example model for a TravelAssistant application

Table 1. Relevant QoS properties for the TravelAssistant application

Property Description Value range
acc Accuracy 1-10
det Level of detail of map 1-10
rel Reliability of estimated travel time 1-10
bat Power consumption of a component or link 0-∞

168 R. Rouvoy et al.

Fig. 3. Architecture of the MUSIC platform

The middleware manages a collection of active applications and seeks to maximize
the overall utility, which is computed as a weighted sum of individual application
utilities. The weights in this case express application priorities of the user.

Figure 3 depicts the component-based architecture of the MUSIC platform. The
planning is typically triggered by context changes detected by the Context Manager.
The Adaptation Controller coordinates the adaptation process. The Adaptation Rea-
soner supports the execution of the planning heuristics, which is driven by metadata
included in the plans [4]. The Plan Repository provides an interface IPlanResolver to
the adaptation reasoner allowing for the recursive retrieval of plans associated to a
given port. Any additional metadata on the required types will help the plan reposi-
tory to exclude plans and thus drastically reduce the exploration space [4,6]. The
adaptation reasoner builds a valid application configuration and discards those whose
dependencies are unresolved. Then, the heuristics ranks the application configurations
by evaluating their utility based on the computation of the predicted properties, whose
values are retrieved from the QoS Manager.

The reconfiguration process is handled by the Configuration Executor, which uses
the set of plans selected by the planner to reconfigure the application. This requires
the collaboration of the components, which must implement a reconfiguration inter-
face allowing the middleware to bring them to a state where they can be safely re-
placed and transfer their state to an alternative component.

3 Challenges of Ubiquitous and Service-Oriented Environments

The term service is perhaps one of the most over-used and confusing terms in the
software industry as analyzed in [9]. Typically, services are defined as functionalities
or capabilities provided by a software system to other software systems or to a human
user [10]. In the context of SOA, services are provided by independent service pro-
viders, which instantiate the providing software on their computers and advertise the
services they provide using standardized mechanisms, such that they can be discov-
ered and bound dynamically by consumers which need them. A fundamental concept

 MUSIC: Middleware Support for Self-Adaptation 169

of service-orientation is the standardized service contract [11], which is used to ex-
press the service semantics and capabilities. Service QoS properties are normally
negotiated between the service provider and the service consumer, and are described
as part of the service contract as a Service Level Agreement (SLA). A service level is
used to describe the expected performance (e.g., response time and availability) and
properties such as billing, termination terms, and penalties in case of a violation of the
SLA [12]. A SLA can either be created after selecting a fixed service level offer
among several pre-defined offers or, in more complex cases, after a customization via
a negotiation process. An SLA may be valid for a limited period or may be terminated
explicitly. During SLA provisioning, the provider monitors the service QoS and adapts
its resources to avoid SLA violations. The consumer may also perform monitoring to
avoid trusting the provider blindly.

The platform presented in the previous section focuses on component based self-
adapting systems. When mobile devices move around in ubiquitous computing envi-
ronments they experience a dynamic service landscape and additional requirements to
self-adaptation arise which require extensions of the platform. To investigate these
issues, we consider the following scenario of Paul who is on his way to meet a friend,
assisted by applications on his mobile device. First, we introduce several situations
that Paul encounters and explain how he and his device react. Then, we explain the
requirements that enable such flexibility.

3.1 Example Scenario: Paul on His Way to Meet a Friend

Paul has been at a concert in Paris. Now, he is taking the subway to a friend to see her
new home and to tell her about the show. His MUSIC-enabled mobile device is
WiFi-, UPnP-, and GPS-enabled. It provides several applications, among them a ser-
vice-based version of the TravelAssistant from the example and a media-sharing
application.

The TravelAssistant assists Paul with route planning, ticket vending, detects travel-
ing delays, and notifies Paul if he is affected by such delays. The media-sharing plat-
form, called InstantSocial [8], appears as a web site. However, instead of relying on a
central Internet server, it is served by a composition of services scattered across
nearby devices. As more users participate, this platform becomes more robust, the
number of shared content items increases and it may become more attractive for the
users. As soon as a critical mass of users leaves, it stops operating.

Scene 1. The scenario starts with Paul entering the Paris subway. He wants to plan the
journey to his friend, which requires a route service for the subway as well as a loca-
tion and a map service for the remaining trip. RATP, the operating company, offers a
route service for public transportation and a map service of Paris at two QoS levels:
basic and premium quality. Via UMTS, there is also access to a commercial service of
high quality, though for a higher monetary cost. Paul requests services of high quality
and his device chooses the cheap premium service of RATP.

Scene 2. With his TravelAssistant, Paul devises his journey and buys a ticket. As
regular traveler, he has an electronic pass. Upon approaching a validation post, his
device detects it, Paul’s pass is checked, and the entrance gate opens automatically.

170 R. Rouvoy et al.

Scene 3. Inside the train, Paul thinks of searching for further pictures of the concert.
He starts the InstantSocial application, which configures itself according to the other
InstantSocial instances in the vicinity. His device notifies Paul about the presence of a
matching media-sharing group. He joins and a moment later his display shows a se-
lection of pictures, each representing a collection of shots of interests. He browses
through the content, selects the ones he likes, and begins to download.

Scene 4. During the trip, there is an incident in the metro, blocking the planned itiner-
ary. The travel assistant notifies Paul and proposes an alternative metro route with a
different final station. Unfortunately, planning the remaining trip is not as smooth as
desired: RATP reserves a large share of its bandwidth to guide the emergency person-
nel and declines to offer the high-quality map service. Furthermore, he cannot use
GPS because the system’s satellites are out of sight. As best solution, Paul’s device
chooses the external high-quality services, despite the higher cost.

Scene 5. Now, Paul is in a train with fewer visitors of his concert. Due to the de-
creased robustness, InstantSocial adapts it focus from sharing to collecting pictures.
The other instances tend to do the same such that the combined media platform weak-
ens. Finally, Paul is notified about the poor quality and he terminates InstantSocial.

Scene 6. After leaving the subway, the GPS module starts working and his device
guides him through the streets. Some minutes later, he arrives at his friend’s home in
time with a device full of impressions to share.

3.2 Requirements for Planning-Based Adaptation

During Paul’s journey, the applications on his device make flexible use of a variety of
services and protocols nonetheless remains operational through various context
changes. In particular, TravelAssistant and InstantSocial depend on external services
that are dynamically chosen and used. Each InstantSocial instance also offers services
to other instances. All these examples of flexibility require middleware support,
which is provided by the design presented in this chapter.

Scene 1 shows a service selection process depending on QoS. The use of an UPnP-
based service in scene 2 demonstrates the need for alternative connection protocols
and services. Scene 3 demonstrates the degree of flexibility required: an InstantSocial
instance is a combination of local and external services; it is able to offer and may use
services at different QoS levels. The actual composition of the instance at a specific
time has to be decided at runtime. Scene 4 features a willful reduction of a QoS level
by the provider of an external service. It results in an adaptation to an alternative
service provider, although the original provider is still offering the service, too. In
scene 5, the device has to cope with an unplanned service termination by the sudden
disappearance of InstantSocial instances. Furthermore, it demonstrates the deliberate
termination of services by the user. Thus, to support scenarios of the kind presented
above, we need to extend the platform to deal with the following SOA requirements:

• Dynamic discovery of services,
• Dynamic binding and change of binding to service providers,
• Negotiation of service level agreements and detection of violations,
• Hosting and publishing of services.

 MUSIC: Middleware Support for Self-Adaptation 171

4 Supporting Service-Oriented Architectures within MUSIC

The interpretation of the term service presented in the previous section relates natu-
rally to the port concept in the conceptual model presented in section 2. Thus we can
accommodate services in the conceptual model simply by considering that ports rep-
resent services provided by or required by components, that services are described by
types, and that service levels are described by properties. However, the middleware
must be extended in several ways to cope with the challenges derived above. The
remaining of this section introduces the consumer- and the provider-side support
offered by the MUSIC platform in order to enable the seamless integration of services
made available in a ubiquitous computing environment.

4.1 Consuming Services within MUSIC

In SOA-based computing environments, an application typically uses one or more
services, which possibly depend on further services and so on. Thus, a large number
of computers owned and administrated by different organizations may potentially be
involved. This problem is aggravated when we deal with several applications running
concurrently. Thus, optimizing utility over the entire set of involved computers is
likely to be intractable both from a technical and administrative point of view. There-
fore, we have to delineate the scope of an adaptation to be more tractable. To this end,
we introduce the notion of adaptation domain and the distinction between internal
and external services.

An adaptation domain is a collection of MUSIC platform instances controlled by
one adaptation manager. It includes one distinguished node (e.g., a handheld device),
which represents a permanent binding to a user. This node acts as the nucleus around
which the adaptation domain forms dynamically as auxiliary nodes come and go. The
movement of nucleus nodes or changes in connectivity due other phenomena causes
the dynamic evolution of an adaptation domain. Adaptation domains may overlap in
the sense that auxiliary nodes may be members of multiple adaptation domains. This
adds to the dynamics and increases the complexity because the amount of resources
the auxiliary nodes are willing to provide to a particular domain may vary depending
on the needs of other served domains. The user of a nucleus node may start and stop
applications or shared components, and the set of running components is adapted by
the adaptation manager according to these user actions and context changes, taking
into account the resource constraints.

Clearly, it makes a difference whether a role is bound by instantiating a component
implementation running in the adaptation domain where a system is built (private
instance), by using a service provided by a component instance already running there
(internal service), or by connecting to a service provided by a third party (external
service). In the first two cases, the adaptation manager building the system must pro-
vision the resources and has control of the provided service level. In the latter case,
the service level is outside the control of the adaptation manager, and it is necessary
to negotiate an SLA with the service providers in order to compare the suitability of
services by different providers and weight against deploying an internal service. Ex-
ternal services may be provided by other adaptation domains or by third party provid-
ers (also referred to as external non-MUSIC services).

172 R. Rouvoy et al.

Discovery of Services and Service Levels. Providers make their services accessible
to third parties according to specific discovery protocols. The MUSIC platform sup-
ports an extensible set of discovery protocols allowing the detection of services avail-
able in the service landscape. The discovery of a service triggers the retrieval of its
service description, which includes information on the service capabilities, semantics,
and possibly the offered service level(s) or QoS properties in form of an agreement
template. The service description and, if available, the related agreement template are
then converted to service plans, each one reflecting an alternative realization for the
service level.

Negotiation of Service Level Agreements. The planning phase involves the evalua-
tion of the available plans, for selecting the composition optimizing the utility of the
applications running on the device. The utility depends on the QoS properties pre-
dicted by the services, whose value can be static or dynamic. Static properties consist
of fixed values that do not change over the time. Dynamic property values can change
according to the current status of the service. Evaluating the actual QoS values for
such properties requires a process of negotiation with the service provider. The cur-
rent MUSIC negotiation protocol is inspired by the WS-Agreement specification [13]
(for both the definition and the creation/monitoring of SLAs), where the provider
enriches the service description with an agreement template and the consumer fills in
the template to create and submit an agreement offer. The offer creation is driven by
Service Level Objectives (SLO), which are conditions defined at application or con-
figuration level and act as pre-defined criteria for negotiating an SLA contract. Once
the provider has accepted the offer, the agreed property values are reflected in the
plan.

Provisioning of Service Level Agreements. Whenever a service available in the
landscape is selected for use as a result of the adaptation reasoning, the MUSIC plat-
form instantiates service proxies. These Proxies act as local representatives of the
remote services and encapsulate the communication protocol necessary to access
them in a location-transparent way. They are created by a binding framework, which
provides dedicated proxy factories. Each factory supports a particular communication
protocol to export or import a service. During the binding phase, the SLA contract
associated with the selected plan is provisioned and enforced by the involved parties,
which includes the reservation of computing resources and the deployment of SLA
monitoring facilities [11,15,16].

Monitoring of Service Level Agreements. For the purpose of SLA monitoring, the
service proxy is instrumented with appropriate monitoring mechanisms according to
the content of the SLA contract (e.g., response delay, result quality). Both parties are
responsible for checking the status of the agreement and for taking proper actions in
case of violation of the agreement. Thus, after the creation of an agreement, the MU-
SIC middleware, at any given time, must be able to check the current state of the
agreement itself. When an agreement is not fulfilled anymore, the MUSIC middle-
ware must terminate it and trigger a new adaptation process in order to detect a new
set of available services and to select among them the best candidate to replace the
one breaking the contract. SLA-enabled service providers handle the state model of an
agreement and of its constituting terms, and make them accessible to consumers in
form of readable properties of the agreement.

 MUSIC: Middleware Support for Self-Adaptation 173

On the consumer side, the MUSIC middleware architecture is responsible for
checking the state of an agreement according to pre-defined policies (e.g., at given
intervals or when detecting that the expected performance of a service is degrading).
By querying the service provider for the agreement state, it is possible to detect
whether the agreement has been violated or not. In case of violation, the consumer
terminates explicitly the agreement by invoking a terminate operation on the provider
side (since there might be costs associated to the usage of the service), and discards
the related service plan, hence triggering a new adaptation process.

4.2 Providing Services within MUSIC

Hosting both applications and components providing services to the outside world in
an adaptation domain complicates the adaptation reasoning. In addition to the user
owning the device, there are also external service consumers, which may have con-
flicting needs (expressed in the SLA). Fortunately, the utility function approach lends
itself quite naturally to cope with such situations. Our solution is to treat shared com-
ponents providing services to external clients in the same way as applications and
equip them with their own utility function, computing the degree of fulfillment of
active SLAs. Using the weights, the overall utility function balances the utility to the
owner of the device against the utility to service clients. This information about user
preferences is included in user profiles.

Another difficulty is related to property prediction. For shared services, the re-
sources needed by the component to guarantee a certain QoS often depend on the
number of consumers. Hence, property predictor functions for shared services must
take this into account.

Publishing of Services and Service Levels. By publishing its description using the
discovery protocols supported by the MUSIC platform, a service running on a node
can be made available to other nodes within the adaptation domain. Each service
description encloses the service type as well as an agreement template describing the
static QoS properties that are provided by this service. QoS dimensions referring to
dynamic properties of the application are unbound in order to be fixed at a later time
depending on the capabilities and the processing load of the hosting node.

Negotiation of Service Level Agreements. The MUSIC platform supports the nego-
tiation of agreements by playing the role of a service provider. Whenever a service
consumer selects one of the published services, the MUSIC platform receives an
agreement offer for consuming this service. The MUSIC platform applies the negotia-
tion heuristics to decide whether to accept or reject this offer by taking the current
resource availability into account. This heuristics predicts the impact of accepting the
offer with regards to agreements that have been already accepted. If the resulting
impact does not trigger any violation of previous agreements, the MUSIC platform
creates an agreement, which keeps track of the negotiation process.

Provisioning of Service Level Agreements. When a service consumer requests an
internal service, the MUSIC platform checks that the requested service refers to an
accepted agreement. Then, the binding framework instantiates a service skeleton—
i.e., a local representative of the service consumer—which reflects the ongoing
agreement and implements one of the supported communication protocols

174 R. Rouvoy et al.

(e.g., SOAP or RMI). Invocations received via the service skeleton are delegated to
the service instance locally deployed on the node.

Monitoring of Service Level Agreements. Depending on the negotiated properties
agreed in the agreement, the service skeleton is instrumented with context sensors,
which are responsible for monitoring the agreement. The MUSIC platform provides a
library of sensors for observable properties (e.g., invocation latency) as part of its
context middleware. If one of the sensors detects a violation in one of the dimensions
of the agreement, it notifies the MUSIC platform about this violation, which results in
the notification of the service consumer and the termination of the agreement.

5 Realizing the Support for Service-Oriented Architectures

This section describes the extension of the MUSIC platform in order to support the
SOA principles as well as the realization of the MUSIC reference implementation.

5.1 Architecture of the Service-Oriented MUSIC Platform

To support the above-mentioned SOA principles [11], we have integrated new com-
ponents into the MUSIC Platform (cf. Figure 4, the composite component SOA Sup-
port). As MUSIC is independent of a particular technology, various implementations
of these components can be developed (e.g., Web Service, CORBA, RMI, or UPnP).

More specifically, the Service Discovery is responsible for publishing and discov-
ering services using different discovery protocols. The Remoting Service is responsi-
ble for the exporting of services at the service provider side, and for the binding to
these services at the service consumer side. Whenever a service is exported, it is en-
abled to accept requests from (remote) service consumers. Each service description
defining the provided functionalities and containing the necessary information for the
consumer to access the service1 can be published by the service discovery. If the ser-
vice provider offers additional guarantees for the published services, agreement tem-
plates are published in addition to the service description.

The service discovery supports the dynamic registration of discovery listeners. A
discovery listener can have interest for particular services and can enforce customized
policies to handle them. For example, the Remote Platform Discovery Listener is
particularly interested in finding remote instances of the MUSIC platform in order to
provide information about the MUSIC platforms connected to the applications. The
SLA Discovery Listener is interested in finding services accompanied with an SLA
support. Upon the discovery of services, the service discovery notifies the registered
discovery listeners by passing them the service descriptions. Since plans are the base
for the Adaptation Manager to perform planning-based adaptation, the discovery lis-
teners create service plans based on the service descriptions and the agreements nego-
tiated by the SLA Negotiation. Plans for remote services are generated whenever

1 For example, the service consumer needs the remote service URL in order to access it. In case

of a RMI-based binding, this URL would be rmi://localhost:8080/EchoService.
While, in case of a Web Service, the URL is the location of the WSDL document, e.g.,
http://localhost:8090/axis2/services/EchoService?wsdl for the Echo Service.

 MUSIC: Middleware Support for Self-Adaptation 175

Fig. 4. SOA configuration of the MUSIC platform

services are discovered; hence plans are available when the adaptation manager trig-
gers an adaptation at a later time. Plans are automatically discarded and removed from
the Plan Repository whenever remote services disappear or for some reason become
unavailable to the middleware.

The distributed instances of the MUSIC platform form a federation such that the
service discovery on different platforms can interact with each other. Hence, MUSIC
platform A can be aware of a service, which is published using a protocol supported
by MUSIC platform B and not supported by A. If the remoting service on platform A
supports the appropriate communication protocol, A is able to bind to that service
which it would not able to discover alone.

Agreement templates can be either static or allow for dynamic negotiation [12].
Furthermore, a service may be offered at a pre-defined set of service levels. When the
service discovery detects such a service, it first generates an abstract service plan
enclosing structural and behavioral metadata related to the service. Then, in order to
reflect the alternative service levels the service discovery publishes an extended ver-
sion of the service plan for each service level into the plan repository. Such a service
level plan inherits the metadata of the service from the abstract service plan and ex-
tends it with the additional QoS properties described by the particular service level
(e.g., service accuracy and cost).

The adaptation manager is then able to compare each available service level when
applying the reasoning heuristics. Since service negotiation is a time critical factor for
an efficient planning process, it should be resolved as soon as possible. In MUSIC,
the negotiation is generally performed during service discovery for static QoS proper-
ties (e.g., service cost) described by the service levels. The resulting static QoS prop-
erty values are included into the service plan such that the predicted properties can

176 R. Rouvoy et al.

automatically report them at a later time. However, in presence of a flexible service
level [11,13], the negotiation becomes dynamic, meaning that the SLA is negotiated
during the planning process. Dynamic negotiation is particularly required when the
adaptation manager needs to reason about up-to-date QoS properties (e.g., current
service accuracy). In this case, the predicted properties, when evaluated by the reason-
ing heuristics, delegate the negotiation of the requested property to the SLA negotia-
tion. The negotiation protocol is driven by SLOs, which are pre-defined criteria for
negotiating SLA [15].

The Configuration Executor generally iterates over the plans composing the new
configuration in order to reconfigure the application. As described in section 2, the
configuration executor distinguishes between plans which refer to available services
and plans which refer to services that are not available yet. In order to benefit from
remote services, the configuration executor now faces a third case: If the plan refers to
a remote service available in the environment, the configuration executor uses the
Remoting Service to generate a specific component that will act as a service proxy. A
service proxy is a local representative of the remote service. In particular, it imple-
ments the service type described by the application components and encapsulates the
communication necessary to access the remote service. By invoking the service
proxy, a service consumer interacts with the remote service in a location-transparent
way—i.e., as if the remote service is a local one.

The remoting service supports the dynamic integration of binding frameworks.
During the binding phase, the SLA associated with the selected plan is provisioned
and enforced by the involved parties. For the purpose of monitoring, the service proxy
is instrumented with appropriate monitoring mechanisms by the component SLA
Monitoring according to the content of the SLA (e.g., response delay, result quality).
The SLA monitoring is responsible for checking the status of the agreement for taking
proper actions in case of its violation.

As an example of performing SLA monitoring in ubiquitous environments, the ser-
vice proxy implements a disconnection detection algorithm. This disconnection sup-
port is inspired by the principles of ambient programming [17]. When loosing the
connection to a remote service, the proxy stores the incoming service requests in a
queue and returns a non-blocking future object to the application. The future object
includes actions that are triggered whenever the connection is resolved to process the
result of the request. If the connection is lost for a long period, the service proxy ter-
minates the agreement via the component SLA negotiation. Subsequently, the SLA
monitoring removes the associated service level plan from the plan repository to trig-
ger an adaptation of the application. During the reconfiguration process, the request
queue is transferred to the new component (or service proxy) that will be selected and
deployed by the middleware.

5.2 Implementation of the Service-Oriented MUSIC Platform

The reference implementation of the MUSIC platform is based on the architecture
described in section 5.1. The selection of the framework, which the reference imple-
mentation of the MUSIC architecture is built upon, has been made to meet the most

 MUSIC: Middleware Support for Self-Adaptation 177

relevant requirements for the MUSIC platform. They are, in particular, open source
framework, multi-platform support, suitability for resource-constrained devices, and
SOA support. Therefore, we selected OSGi to leverage the MUSIC platform.

OSGi (http://www.osgi.org) defined itself as the dynamic module system for
Java, is a service-oriented component-based framework. The success of OSGi may be
attributed to its relative simplicity, efficiency, openness, and portability. Multiple
open source implementations of OSGi are available. Since its initial design, OSGi
targets resource-constrained devices. Some existing implementations, such as Conci-
erge [18], exhibit a reasonable memory footprint for resource-constraint devices (80
kB). Furthermore, some initiatives, such as the OSGi Mobile Specification (JSR-232)
[19], the Eclipse eRCP project [20] or the Sprint Titan platform [21], propose OSGi
for hosting applications in mobile devices. OSGi offers a class-loading mechanism to
dynamically load/unload modules (bundles in the OSGi terminology). This feature is
particularly interesting to support the plug-ability of the MUSIC architecture. Plug-
ability is required to tackle the heterogeneity in communication and service discovery
technologies. It also allows the integration of an extensible set of customized context
sensors and adaptation algorithms.

SOA is the cornerstone of both OSGi and MUSIC. The SOA implementation in
OSGi is simple and efficient, based on fast Java method invocations and a service
registry, which provides mechanisms to react on the appearance and disappearance of
services (essential in mobile environments). However, OSGi lacks of distribution
support because OSGi services only communicate within one Java VM. The Service
Discovery and the Remoting Service jointly extend OSGi with transparent distribution
support and provide an abstraction to dynamically incorporate realizations of different
discovery and communication protocols.

The Service Discovery delegates requests for publishing and discovery to protocol-
specific implementations of service discovery, which are plugged into the platform as
OSGi services implementing the interface IServiceDiscoveryFactory. Currently, the
Service Location Protocol (SLP) protocol based on jSLP [22] and the Universal Plug
and Play (UPnP) protocol based on the UPnP bundle of DomoWare [23] are sup-
ported by the MUSIC platform.

The Remoting Service supports plug-ability in a similar way. Each protocol-
specific realization implements the interface IExportFactory or IRemoteBindingFac-
tory, and is registered as a service to the service registry. Currently, the remoting
service has support for exporting and binding services using sockets messaging and
UPnP. The Web Service support is under development by a lightweight SOAP engine
and small footprint HTTP server [24]. We create dynamic service proxies with the
code generation library CGLIB [25], and attach communication protocol-specific
interceptors to the service proxies. The instrumentation of a service proxy with SLA
monitoring mechanisms will be realized by adding monitoring interceptors to the
proxy (e.g., to measure the response time).

MUSIC has chosen a set of lightweight frameworks and protocols to offer the best
balance between performance in mobile devices and application requirements. The
preliminary implementation of the TravelAssistant has demonstrated the good behav-
ior of the MUSIC platform in a handheld device.

178 R. Rouvoy et al.

6 Discussions

As a preliminary validation of our approach, in this section we present a walk-through
of how the middleware would behave in the scenario described in section 3.1. Table 2
presents the realizations available for the different services with property predictors
for the relevant properties. In addition to the properties defined in table 1, we also
introduced cost, which is very relevant for 3rd party services, and extended the utility
function as follows: utility=0.6*norm(acc) + 0.1*(1-norm(bat))+ 0.3*(1-norm(cost)).
Based on this extended model we computed the utilities of the various configurations
in different scenes. Table 3 shows the utility of the best configurations in different
situations during the scenario.

In the first three scenes of the scenario, the composition i) using the RATP Loca-
tion, Map, and high quality Route services predicts the highest utility and is therefore
chosen. In scene 4, the high quality RATP Map service breaks its SLA. The service
proxy observes this and notifies the component SLA Monitoring, which terminates the
agreement and triggers a re-planning. The Adaptation Manager predicts that using the
commercial Map service instead now yields the highest utility and asks the Configura-
tion Executor to reconfigure the application’s service binding. This includes generat-
ing a corresponding service proxy. In scene 6, the device’s GPS discovers the
satellites and publishes the associated service plans into the Plan Repository. As this
service provided by a local component is free and accurate, the adaptation manager
predicts its use to have the highest utility and reconfigures accordingly.

Table 2. Services defined in the TravelAssistant application

Service Description Provider Level Property predictors

Location Locates the device RATP cost=0, acc=5, bat=1

 geographically Local component
using the builtin
GPS

 cost=0, acc=7 if GPS
signal, 0 otherwise,
bat=3

Map Provides a map of a limited RATP basic cost=0, det=1, bat=2

RATP detailed cost=5, det=9, bat=4 area
3rd party cost=9, det=9, bat=4

RATP basic cost=0, rel=1, bat=1 Route Computes best route and
estimated travel time

RATP reliable cost=5, rel=7, bat=1

Table 3. Some alternative configurations and utilities of the TravelAssistant

 Configuration Utility
Location Map Route Scene 1 Scene 4 Scene6
RATP RATP detailed RATP reliable 0,64 - -
RATP 3rd party RATP reliable 0,56 0,56 0,56
builtinGPS 3rd party RATP reliable - - 0,58

 MUSIC: Middleware Support for Self-Adaptation 179

The InstantSocial application appears to the user as a centralized application, while
under the hood, each user runs its own IS instance in its own adaptation domain. The
multi-user behavior emerges from the interactions among the IS instances services—
i.e., each IS instance offers services and uses services offered by the others. The util-
ity function determines the composition and behavior of an individual instance de-
pending on the local resource situation and the QoS of the used services, and therefore
indirectly also on the composition and resource situation of the other instances. Thus,
the user-visible shape of InstantSocial appears according to size and quality of the
instances in the collection.

The composition of IS describes three roles: browser proxy (BP), presentation (P),
and content repository (CR). The content repository component is responsible for
maintaining an inventory of available content in all the participating devices and pro-
viding access to it. CR instances act both as consumers and providers of the member-
ship service. When a new CR instance is created, it will use the membership service
provided by an existing instance to become included in the common distributed con-
tent repository, and later it may provide this service to another new instance. CR in-
stances also implement partial replication of content to ensure a certain stability of the
federated repository even if participants leave. Presentation components monitor the
content repository in order to find relevant content elements, according to user prefer-
ences. They present lists of relevant contents and selected content elements to the BP
component. Browser proxy components execute as demons and invoke the built-in
browser to present the user interface when InstantSocial is in the foreground.

7 Related Work

Adaptive Service Grids (ASG) [26] and VieDAME [27] are initiatives enabling dy-
namic compositions and bindings of services for provisioning adaptive services. In
particular, ASG proposes a sophisticated and adaptive delivery lifecycle composed of
three sub-cycles: planning, binding, and enactment. The entry point of this delivery
lifecycle is a semantic service request, which consists of a description of what will be
achieved and not which concrete service has to be executed. VieDAME proposes a
monitoring system that observes the efficiency of BPEL processes and performs ser-
vice replacement automatically upon performance degradation. Compared to our
planning-based middleware, ASG and VieDAME focuse only on the planning per
request of service compositions with regards to the properties defined in the semantic
service request. Thus, both approaches do not support a uniform planning of both
components and services as our planning-based framework for ubiquitous applica-
tions does. However, our planning-based middleware can be extended to integrate
ASG and VieDAME adaptive services and thus support the dynamic enactment of
service workflows.

Menasce and Dubey [28] propose a QoS brokering approach in SOA. Consumers
request services from a QoS broker, which selects a service provider that maximizes
the consumer’s utility function with regards to its cost constraint. The approach as-
sumes that service providers register with the broker by providing service demands
for each of the resources used by the provided services as well as cost functions for
each service. The QoS broker uses analytic queuing models to predict the QoS values

180 R. Rouvoy et al.

of the various services that could be selected under varying workload conditions. This
approach is of interest both from the viewpoint of a consumer and a provider. While
the client is relieved from performing service discovery and negotiation, the provider
is given support for QoS management. This approach, however, requires the client
device to be able to access the broker, which might not be possible in ubiquitous envi-
ronments. Our approach differs in that we consider the offered properties as alterna-
tives to determine the best application configuration and allow the client to adapt to
the service landscape.

CARISMA is a mobile peer-to-peer middleware exploiting the principle of reflec-
tion to support the construction of context-aware adaptive applications [29]. Services
and adaptation policies are installed and uninstalled on the fly. CARISMA can auto-
matically trigger the adaptation of the deployed applications whenever detecting con-
text changes. CARISMA uses utility functions to select application profiles, which are
used to select the appropriate action for a particular context event. If there are con-
flicting application profiles, then CARISMA proceeds to an auction-like procedure to
resolve (both local and distributed) conflicts. Contrary to MUSIC, CARISMA does
not deal with the discovery of remote services that can trigger application reconfigu-
rations. However, the auction-like procedure used by CARISMA could be integrated
in the MUSIC middleware as a particular negotiation protocol.

The conceptual models of both SeCSE (http://secse.eng.it) and PLASTIC
(http://www.ist-plastic.org) focus on service-oriented systems. Inspired by
the SeCSE model, the PLASTIC model extends it by introducing new concepts, such
as context, location, and service level agreements. The MUSIC and the PLASTIC
model have in common that both combine SOA and component-based software de-
velopment. However, the MUSIC conceptual model uses a component-centric ap-
proach, while the PLASTIC model uses a service-centric approach.

Finally, R-OSGi extends OSGi with a transparent distribution support [30] and uses
jSLP to publish and discover services [22]. The communication between a local ser-
vice proxy and the associated service skeleton is message-based, while different
communication protocols (e.g., TCP or HTTP) can be dynamically plugged in. In
contrast to R-OSGi, the discovery and binding frameworks of MUSIC are open to
support a larger range of discovery and communication protocols.

8 Conclusion and Perspectives

In this paper we have introduced the design of a QoS-driven generic planning frame-
work for self-adaptive mobile applications, which seamlessly supports and blends
component-based and service-based configurations. In particular, we have shown that
the framework is able to adapt to changes in a landscape of ubiquitous remote ser-
vices that dynamically come and go, and where the offered service qualities vary. The
framework exploits these changes to maximize the overall utility of applications. To
that aim, the paper has shown how the planning middleware discovers remote services
and evaluates them as alternative providers for the functionalities required by an ap-
plication. The planning framework deals directly with SLA protocols supported by
the services to negotiate the best QoS for the end-user. The current MUSIC platform

 MUSIC: Middleware Support for Self-Adaptation 181

has already implemented the binding and discovery of services with a range of well-
known technologies, while the SLA support is currently under development.

As a preliminary validation of our approach, the paper also explained how the
planning framework handles a use case in which the TravelAssistant and the Instant-
Social applications of a mobile user exploit ubiquitous services, such as location,
map, and content services, to improve their utility whenever such services become
available. The TravelAssistant has successfully validated the service binding and
discovery, and will be enhanced in future releases. InstantSocial will be developed by
the end of the MUSIC project (http://www.ist-music.eu).

Acknowledgements. We would like to thank our partners of the MUSIC project for
valuable comments. This work was partly funded by the European Commission
through the project MUSIC (EU IST 035166).

References

1. Mascolo, C., Capra, L., Emmerich, W.: Mobile Computing Middleware. In: Gregori, E.,
Anastasi, G., Basagni, S. (eds.) NETWORKING 2002. LNCS, vol. 2497, pp. 20–58.
Springer, Heidelberg (2002)

2. Rouvoy, R., et al.: Composing Components and Services using a Planning-based Adapta-
tion Middleware. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 52–67.
Springer, Heidelberg (2008)

3. Geihs, K., et al.: A comprehensive solution for application-level adaptation. Software:
Practice and Experience (2008)

4. Brataas, G., et al.: Scalability of Decision Models for Dynamic Product Lines. In: Int.
Work. on Dynamic Software Product Line, DSPL (2007)

5. Floch, J., et al.: Using Architecture Models for Runtime Adaptability. IEEE Soft-
ware 23(2) (2006)

6. Lundesgaard, S.A., et al.: Construction and Execution of Adaptable Applications Using an
Aspect-Oriented and Model Driven Approach. In: Indulska, J., Raymond, K. (eds.) DAIS
2007. LNCS, vol. 4531, pp. 76–89. Springer, Heidelberg (2007)

7. Khan, M.U., Reichle, R., Geihs, K.: Architectural Constraints in the Model-Driven Devel-
opment of Self-Adaptive Applications. IEEE Distributed Systems Online 9(7) (2008)

8. Fraga, L., Hallsteinsen, S., Scholz, U.: InstantSocial – Implementing a Distributed Mobile
Multi-user Application with Adaptation Middleware. EASST Communications 11 (2008)

9. Baida, Z., et al.: A shared service terminology for online service provisioning. In: 6th Int.
Conf. on Electronic commerce (2004)

10. Sassen, A., Macmillan, C.: The service engineering area: An overview of its current state
and a vision of its future. European Commission. Network and Communication Technolo-
gies, Software Technologies (2005)

11. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Englewood Cliffs (2006)

12. Dan, A., Ludwig, H., Pacifici, G.: Web service differentiation with service level agree-
ments. IBM White Paper (2003)

13. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement), Open Grid
Forum Recommended Specification (2005)

182 R. Rouvoy et al.

14. Flores-Cortés, C.A., Blair, G.S., Grace, P.: An Adaptive Middleware to Overcome Service
Discovery Heterogeneity in Mobile Ad Hoc Environments. IEEE Distributed Systems
Online 8(7) (2007)

15. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management 11(1) (2003)

16. Morgan, G., et al.: Monitoring Middleware for Service Level Agreements in Heterogene-
ous Environments. In: 5th Int. Conf. on e-Commerce, e-Business, and e-Government
(I3E), Poznan, Poland, vol. 189 (2005)

17. Dedecker, J., et al.: Ambient-Oriented Programming. In: Companion of the 20th Ann.
Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA) (2005)

18. Rellermeyer, J.S., Alonso, G.: Concierge: a service platform for resource-constrained de-
vices. In: 2nd Eur. Conf. on Computer Systems (EuroSys). ACM, New York (2007)

19. JCP. OSGi Mobile Specification (JSR-232),
http://jcp.org/en/jsr/detail?id=232

20. Eclipse. Embedded Rich Client Platform, http://www.eclipse.org/ercp
21. Sprint. Sprint Titan, https://developer.sprint.com
22. Rellermeyer, J.S., Kuppe, M.A.: jSLP, http://jslp.sourceforge.net
23. Demuru, M., Furfari, F., Lenzi, S.: DomoWare, http://domoware.isti.cnr.it
24. Equinox. OSGi HTTP Server,

http://www.eclipse.org/equinox/server/http_in_equinox.php
25. Baliuka, J., et al.: Code Generation Library (CGLIB),

http://cglib.sourceforge.net
26. Kuropka, D., Weske, M.: Implementing a Semantic Service Provision Platform — Con-

cepts and Experiences. Wirtschaftsinformatik Journal (1), 16–24 (2008)
27. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for

WS-BPEL. In: 17th Int. Conf. on World Wide Web (WWW). ACM, New York (2008)
28. Menasce, D., Dubey, V.: Utility-based QoS Brokering in Service Oriented Architectures.

In: Int. Conf. on Web Services (ICWS) (2007)
29. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective Middle-

ware System for Mobile Applications. IEEE Trans. on Software Engineering 29(10)
(2003)

30. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications Through
Software Modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007.
LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

	MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented Environments
	Introduction
	The MUSIC Approach to Self-Adaptation
	Challenges of Ubiquitous and Service-Oriented Environments
	Example Scenario: Paul on His Way to Meet a Friend
	Requirements for Planning-Based Adaptation

	Supporting Service-Oriented Architectures within MUSIC
	Consuming Services within MUSIC
	Providing Services within MUSIC

	Realizing the Support for Service-Oriented Architectures
	Architecture of the Service-Oriented MUSIC Platform
	Implementation of the Service-Oriented MUSIC Platform

	Discussions
	Related Work
	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

