
iBeacons

kinan.arnaout@intellicore.net - Octobre 2015

• www.intellicore.tv

http://www.intellicore.tv

• http://www.intellicore.tv

• http://playrz.com/

• iBeacon Solutions

http://www.intellicore.tv
http://playrz.com/

Content

• What is an iBeacon?

• Bluetooth LE
• How does it work?
• Examples / FAQ

• Let’s practice

• Compatible devices
• iBeacon API

What is an iBeacon?

Bluetooth LE
• Bluetooth Low Energy / Bluetooth Smart

• Invented by Nokia in 2006 (Wibree)

• Wireless personal area network
technology used for transmitting data over
short distance

• Bluetooth version 4.0

• Cardio & temperature monitors / smart
watchs / etc.

Bluetooth LE

• No pairing

• Short connection time

• Cheaper (60-80%)

• Large number of slaves

• Lower data transfer speed

• Low power consumption to detect and
broadcast (up to 3 years with simple coin
battery cell)

• Advertisement : small data packet

• Broadcast at regular interval

• One way communication

Bluetooth LE

Peripherals Central
Ad AdAd

How does it work?

• Standard for BLE advertising

• 4 main pieces of information

• Devices as peripherals or central

UUID Tx powerminormajor

Advertisement packet

How does it work?

• Scan for beacons identified with the same
UUID

• Detect if the device is in the region of one or
more beacons (~50m)

• Determine the proximity of a beacon
(ranging)

• Differentiate beacons with minor and major

How does it work?

• Chipset implementing bluetooth LE
and iBeacon standard

• Embedded in small devices

How does it work?

• Indoor positioning system

• Geofencing

• Location awareness for apps

• Deliver contextual content to user
based on location

How does it work

• Using advertisement packet
information

• UUID : 16 bytes string identifying a large group of related
beacons

• Major : 2 bytes number describing a subset of beacons

• minor : 2 bytes number to identify a particular beacon

• Tx power : determine proximity (distance)

How does it work

• 3 kinds of proximity (distance)

• immediate

• near

• far

To sum up

• Bluetooth device any app can discover
if it knows the right UUID

• A set of beacons can describe a region

• Each beacon provides major, minor
and proximity

iBeacons benchmark

• http://www.aislelabs.com/reports/
beacon-guide/

http://www.aislelabs.com/reports/beacon-guide/

Examples

• Museums

Examples

• Stores

Examples

• Stadiums

Examples

• Airports

Pros & cons

• Barrier to wide adoption : customers have to turn on bluetooth,
accept location services on the relevant app and opt-in to receive
in-store or indoor notifications

• Can not detect iBeacon without UUID

• No precise location (more accurate than GPS though)

• Indoor location

• Clean API paired with GPS in CoreLocation (and Apple full support)

• Cheaper hardware

FAQ
• A beacon can be precisely located :

Wrong : signal strength and environment factors
• Beacon can push information :

Wrong : the app receive major/minor (had to retrieve data from
server or in app database)

• Beacon can be detected in background :
True : the app will detect if the device enters or exits a location
described by beacons (latency)

• Other platforms :
True

Let’s practice

Compatible devices
• Devices compatible with Bluetooth 4.0

• iOS devices from iPhone 4S, new iPad,
iPad mini, …

• Android 4.3 (Nexus 4/5/7, Samsung
galaxy S3/S4/S5/Note2/Note3,
Optimus G/G2, HTC One/Butterfly,
etc.)

iBeacon API

• A layer on top of CoreBluetooth
exposed by CoreLocation

• Monitoring & ranging

• Background detection

• Display notification

iBeacon API

• Ranging beacons

• Device as a beacon

• Monitoring beacons

• Detect in background and notify

Ranging beacons
• PBBeaconDetectionTableViewController

• Import CoreLocation

• Implement CLLocationManagerDelegate

• Create a LocationManager, NSUUID and CLBeaconRegion (viewDidLoad)

• Start ranging beacons in the CLBeaconRegion previously created (in
viewDidAppear)

• Stop ranging (in viewDidDisappear)

• Location manager delegate :
- (void)locationManager:(CLLocationManager *)manager didRangeBeacons:(NSArray *)beacons
inRegion:(CLBeaconRegion *)region

• Complete UITableView data source methods

Device as a beacon
• PBAdvertiseBeaconViewController

• Import CoreLocation and CoreBluetooth

• Implement CBPeripheralManagerDelegate

• Create CBPeripheralManager object and initialize in viewWillAppear

• When switch is enable, retrieve data from form, create CLBeaconRegion
and start advertising (using CBPeripheralManager object)

• When switch is disabled, stop advertising (or when viewWillDisappear)

• UUIDGEN command in terminal to generate new UUID

Monitoring beacons

• See « Ranging beacons »

• Create CLBeaconRegion setting notifyOnEntry and notifyOnExit attributes

• Call startMonitoringForRegion

• Listen to callbacks

- (void)locationManager:(CLLocationManager *)manager didEnterRegion:(CLRegion *)region;

- (void)locationManager:(CLLocationManager *)manager didExitRegion:(CLRegion *)region;

• Start Ranging when in entering a region (and stop when exiting)

Background &
notifications

• CLBeaconRegion notifyEntryStateOnDisplay attribute

• Location service will keep track of device state

• In appDelegate

• Use CLLocationManagerDelegate to get the callback

- (void)locationManager:(CLLocationManager *)manager didDetermineState:
(CLRegionState)state forRegion:(CLRegion *)region

• Create UILocationNotification

• Check state value to set notification body

Questions?

