Conception d'Objets Communicants CAO et Prototypage Rapide

« Tout le monde savait que c'était impossible. Il est venu un imbécile qui ne le savait pas et qui l'a fait. » Marcel Pagnol

ERT GASPARD MONGE

proto@cmcao.com

SCHNEIDER Alexandre

alexandre.schneider@univ-reims.fr

ERT Gaspard Monge

- Équipe de recherche technologique
 - Basé au sein du CReSTIC (<u>Centre de</u>
 <u>Recherche en Sciences et Techniques de</u>

 <u>I'Information et de Communication de</u>
 <u>I'université de Reims Champagne Ardenne</u>)

Problématique

• Elle s'intéresse à un verrou technologique précis : aider des entreprises sous-traitante de fabrication à devenir des entreprises de sous-traitance fonctionnelle (ou passer de rang i+1 à rang i) en s'appuyant sur la chaîne numérique dans un contexte d'entreprise étendue et sur les compétences métiers.

Partenaire

- A.F.Micado (<u>www.afmicado.com</u>)
 - Association Française des Technologies de l'Information et de la Communication pour l'Ingénierie Numérique
 - CAO (qualité des modèles, tolérancement)
 - Simulation numérique,
 - · PLM, travail collaboratif
 - Espace neutre de réflexion et d'échange
 - Membres:
 - EADS, Airbus, EDF, PSA Peugeot Citroen, Renault, SNECMA, Thales, IBM, Dassault Systemes, SEEMAGE, Adobe, ...
- DINCCS (<u>www.dinccs.com</u>)
 - Centre technique
 - Liaison directe avec PME (CAO/Simulation/TC)
- VLM'12 Centre des congrés de Reims
 - Programme des conférences

Projet collaboratif

Conception d'un objet « communiquant »

- Réalisation de prototypes → (IFTS)
 - Pourquoi, comment, ...

- Travail à distance via portail collaboratif
 - Adhoc Collaboration

Conception d'Objets, CAO et Prototypage

- Programme
- Cahier des charge (CDC)
- Démarche collaborative
- CAO / CFAO
- Prototypage

Cahier des charges

- Composition :
 - Descriptif de l'objet
 - A quoi sert-il?
 - Comment va-t-il fonctionner (scénario)?
 - ...
 - Fonctionnement de l'objet dans son contexte
 - Comment va-t-il être construit ?
 - De combien d'éléments est-il composé?
 - Comment vont-ils être assemblés?
 - Est-il fixé?
 - Comment?
 - •
 - Spécificités de l'objet
 - De quel matière sera fait l'objet?
 - · Quelle est sa dimension extérieure?
 - L'objet est-il souple ou dur?
 - · L'objet contiendra-t-il d'autres éléments?
 - L'objet sera-t-il percé?
 - •

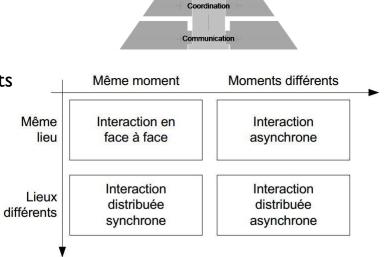
Démarche collaborative

- Utilisation du portail Adhoc collaboratif
 OBLIGATOIRE
 - Échange de données
 - Discussion sur des problèmes divers
 - Réunions aux dates jalons
- Respect des dates jalons

Ingénierie collaborative et PME ...

Qu'est-ce que l'ingénierie collaborative ? c'est:

Travailler simultanément


Fédérer les compétences

Associer les équipes de travail

Gérer en interne ou/et en externe tous les intervenants

Ingénierie collaborative et PME ...

- Intérêts évidents ...
 - · Implication dans la chaîne numérique
 - Gestion des informations (internes et externes, spécifications, ...)
 - Apport du savoir-faire des différents acteurs au bon moment
- Moyens pour y parvenir jugés abscons et rébarbatifs par les PME
 - Problèmes
 - ROI ?
 - · Investissement matériel et humain!
 - Appréhension / compréhension des outils
- Outils existants
 - Agglomération d'outils indépendants
 - Portails collaboratifs
 - Utilisation asynchrone
 - Vers un travail synchrone ...

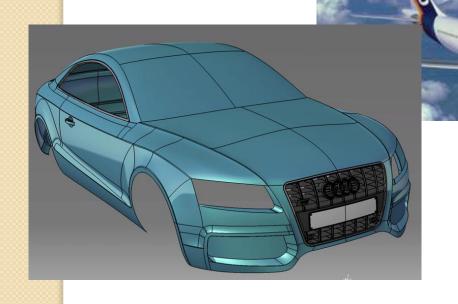
Collaboration

Taxonomie Espace-Temps selon Ellis 1991

CAO et CFAO

- CAO pour Conception Assistée par Ordinateur
 - Utilisation du logiciel CATIA V5 par les M2 INC (Ingénierie Numérique et Collaborative)
- Distinction surfacique / volumique

CAO qu'est ce que c'est?

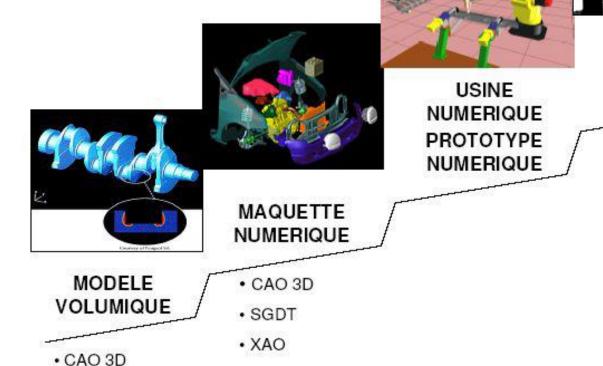

- Ce n'est pas seulement le dessin, c'est aussi la modélisation, le prototypage virtuel... Ces phases vont permettre notamment :
 - · la recherche/l'optimisation de formes d'aspect
 - · l'animation d'objets ou d'éléments d'un ensemble
 - la visite virtuelle d'espaces
 - · la simulation dans le bâtiment, l'industrie...
 - · le moulage ou l'usinage de pièces...

CAO pour qui?

- Automobile
- Aviation
- Sous traitants

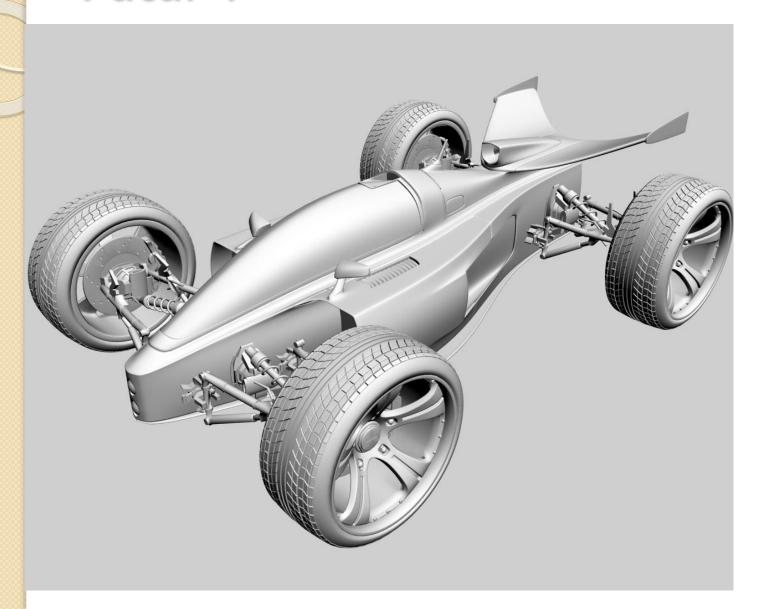
La CAO dans la chaîne numérique

 Vérification de positionnement dans une entreprise


La CAO dans la chaîne numérique

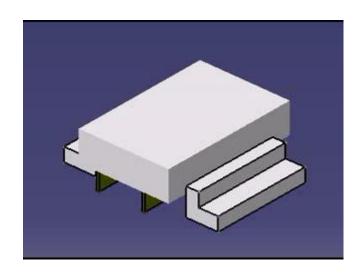
Tous les outils XAO tendent à être intégrés au sein d'une seule et

même plateforme


CATIA V5 = CAO + IAO + FAO + GPAO...

CATIA V6 gestion du PLM

REALITE VIRTUELLE

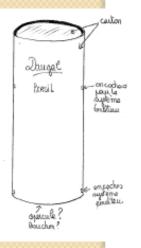

Futur?

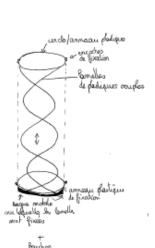
CFAO

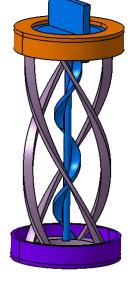
- Simulation de fabrication des pièces
 - Exemple de l'usinage

Le prototypage

- Prototype virtuel : souvent insuffisant ...
 - Préhension ? Appréhension ? Adaptation ? Fonctionnement ?
 - Simulation : OK ... mais besoin de contact ...
- Création de l'objet physique
 - Objet non finalisé (phase d'étude)
 - Fabrication classique ?
 - Exemple de l'injection
 - Création d'un moule : 50 k€
 - Retouche improbable
 - Mise en œuvre
 - Presse à injecter 200 T
 - Prototypage ?
 - Pas d'outillage !
 - 5 € de matière ...
 - Une imprimante 3D « de bureau »

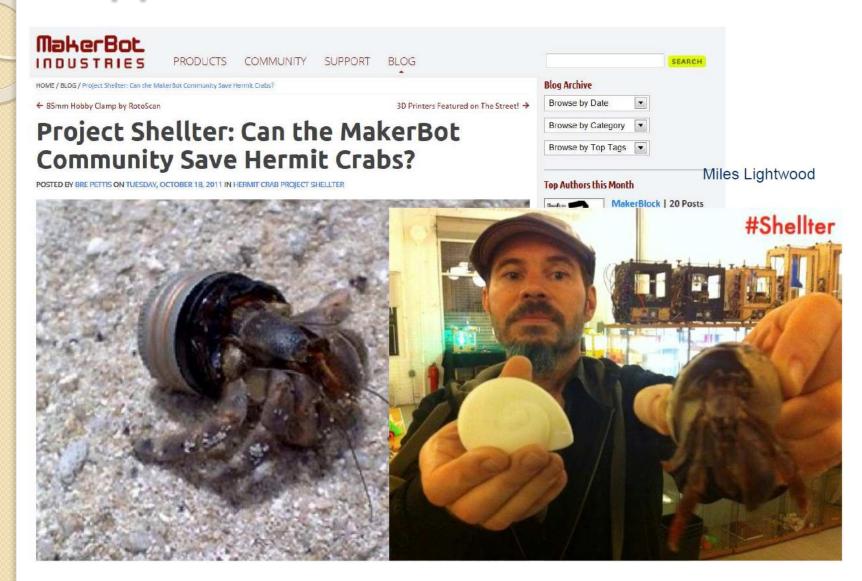

Le prototypage


- Prototypage rapide
 - Fabriquer à moindre frais un prototype physique
 - Représente l'objet ...
 - 3 types de représentation
 - représentation permettant de visualiser l'objet
 - représentation permettant de valider les fonctions de l'objet
 - · représentation permettant de valider le procédé de fabrication
 - Niveau d'avancement du projet correspond un prototype
 - prototype design
 - prototype géométrique (à l'échelle, tangence, ...)
 - prototype fonctionnel (proche bonne matière)
 - prototype technologique (idem + technologie de fabrication)
 - prototype présérie



Que peut-on faire en proto?

- Tout ou presque ... donc attention !!!
 - Assemblage ?
 - · Quel stade de développement, quel objectif ?
 - Design, forme à l'échelle 1:1, fonctionnel, ...?



Applications innovantes

Innovative mechanisms

Développement de nouveaux matériaux

Created by Dr Liang Hao, University of Exeter, Chock Edge Limited)

Utilisation innovante des sources d'énergie

Markus Kayser's "Solar Sinter" 3D printer

Idées commerciales innovantes

- □ REAL-f, a Japanese company, uses Three Dimensional Photo Form (3DPF) photo mapping technology to 3D print your face
- ☐ Sculpteo.com also offers a bobble-head service where you take a photo of your face from the front and side, submit the file, and print the bobble-head
- ☐ Thatsmyface.com also offers a number of products with your face on them

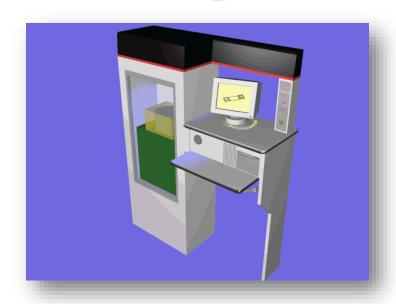
Des façons novatrices de collecte de fonds

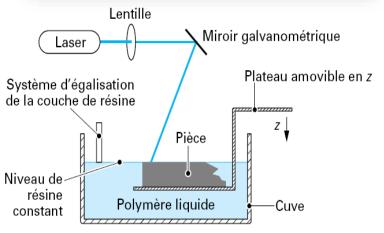
- Crania Anatomica Filigre
- When Joshua Harker created a Kickstarter project for the design, he set the goal at \$500.
 To date, it's raised over \$77,000.
- \$1 and get a downloadable desktop wallpaper featuring the design
- \$40 would get you a t-shirt
- \$50 got you the small version of the sculpture
- \$250 got you the large version.

Produit au marketing ou marketing de produit

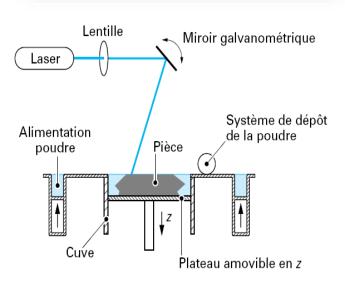
Ajout d'esthétique à l'utilitaire

De nouvelles façons de concevoir des structures



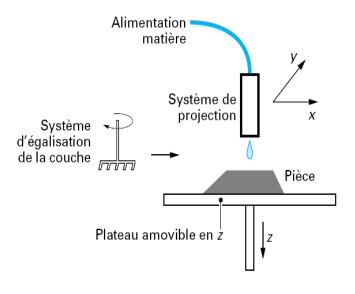

Les dérives...

 http://www.gizmodo.fr/2012/10/13/repliqu e-arme-imprimee-3d.html

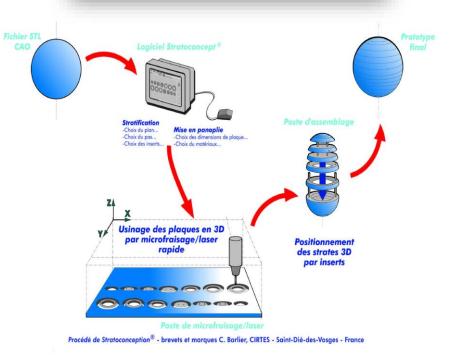

- Stéréolithographie
 - → géométrie
 - Résine (acrylates), polymères
 - Faible retrait
 - problème de contre dépouille
 - fabrication de supports
 - Précision = 0.1 mm

- Frittage de poudre fonctionnel
 - Même principe
 - Poudre, déposée par couche puis frittée (fusion)
 - matière
 - plastiques
 - nylon, ABS, polycarbonate, polystyrène
 - métaux
 - céramique
 - cire
 - sable
 - pièce poreuse (pièce verte)
 - infiltration de matière
 - fabrication de supports pour les contres dépouilles
 - Complexe et cher
 - 300x300x300mm
 - Précision 0, I mm

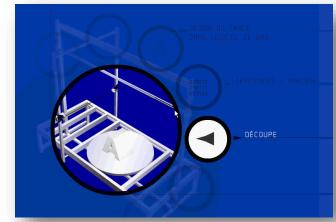
• FDM:


- Matières
 - ABS
 - PLA
 - Wood Filament -LAYWOO-D3
- Proto design/forme
 - 0.1mm à 20mm par couche
 - Rapidité d'impression

- Impression (3D) : dépôt
 - Toujours des supports ...
 - Matières
 - Cire
 - Plâtre
 - · Polymères,
 - Proto fonctionnel
 - Plus fragile que frittage
 - ... mais avec de la couleur ...
 - 200x200x250
 - Précision 0,012mm



- Stratoconception
 - Assemblage
 - Collage
 - Soudage
 - rivetage
 - •
 - Matière :
 - Bois
 - Aluminium
 - Polymères



Stratoconception

- Découpe par fil chaud
 - Matière :
 - Fil chaud
 - Bloc de polystyrène
 - Proto fonctionnel
 - Réalisation de petites et grandes pièces

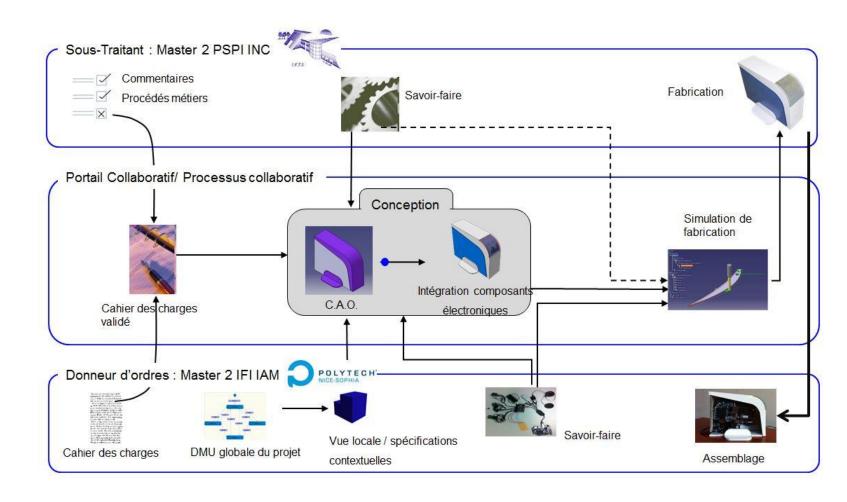
13D et scanner 3D « grand public »

 Low cost ≠non qualité

• Précision :

 FormLabs de 25µm par couche (résine)

 Makerbot de 100µm par couche

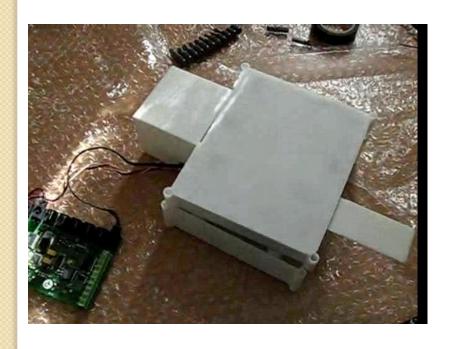


14/10/2014

37

Processus de collaboration

Les outils à disposition...


- L'idée, l'originalité
 - Brainstorming, Méthode Triz...
- La conception 3D
 - Thingiverse, Grabcad... à télécharger
 - Blender, sketchup, freecad, <u>Art of illusion</u>, openscad, sculptris, <u>123Design</u>... à concevoir soi même
 - CATIA, Solidworks, Rhino... pour modèle final (à usage des M2 INC)
- La stratification
 - slic3R, Skeinforge, Makerware...
- L'impression 3D
 - ReplicatorG, PronterFace, Repetier-Host

Fabbaloo

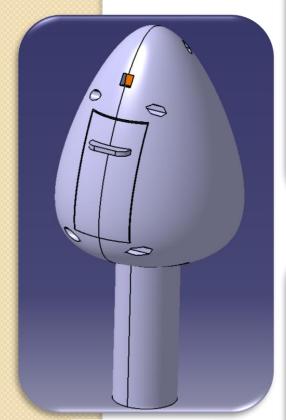
Thingiverse

Ce qu'il faut faire et ce qu'il ne faut pas faire

- Deux exemples des années précédentes.
 - Smart Door Lock
 - SmartLight

PROJETS 2009-2010

Polytech'Nice-Sophia

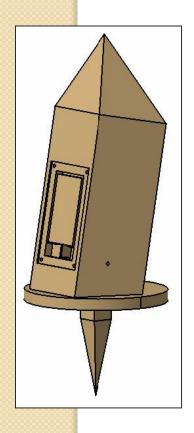


4047,92 €

Smart Hiking Assistant de randonné communiquant

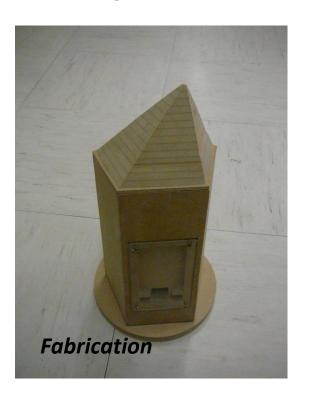
Modèle CAO.

Machine de frittage de poudre.



Machine de Stratoconception.

Prototype terminé.


Smart Garden (Station météo)

Stratoconception

Modélisation

Plante Communicante

Machine de frittage de poudre.

Modèle CAO.

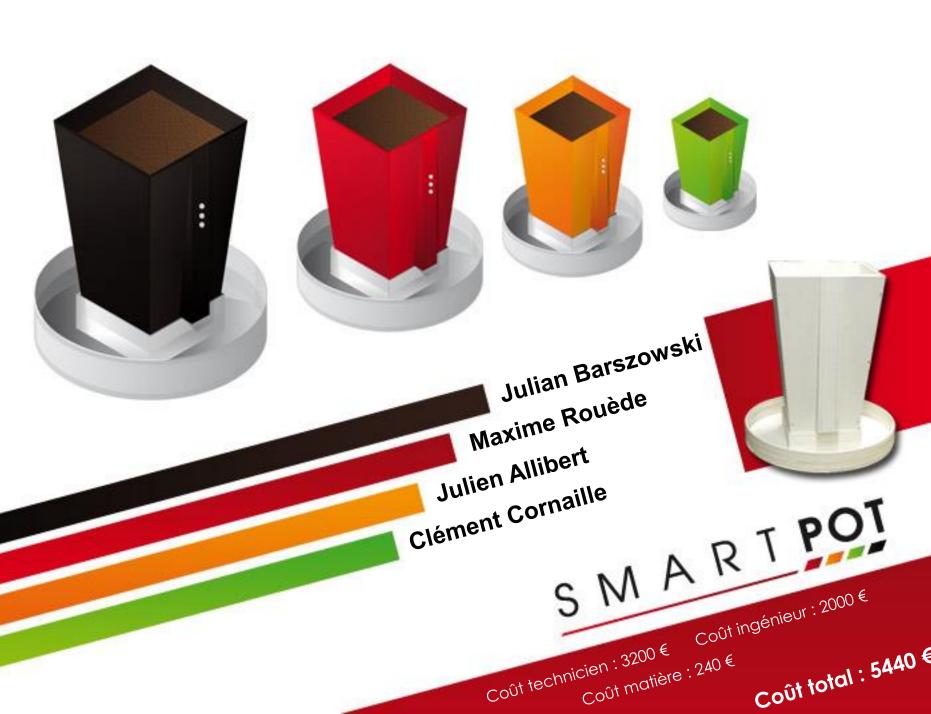
Coût Total

3208,58€

Prototype terminé.

SMART Light Météo

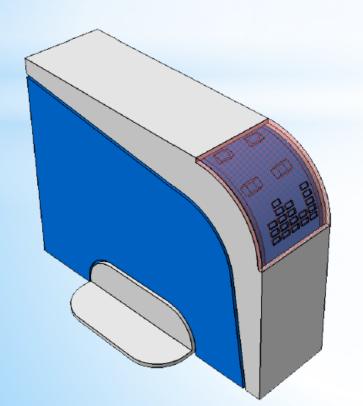
PROJETS 2010-2011

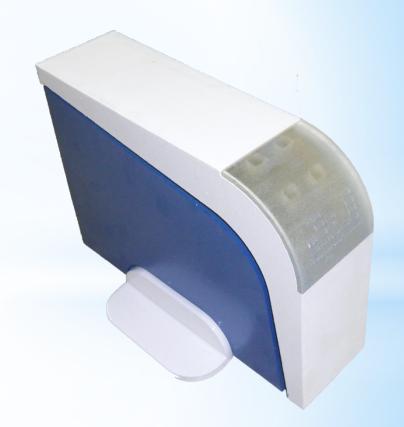


Polytech'Nice-Sophia

Coût matière : 240 €

Coût total: 5440 €



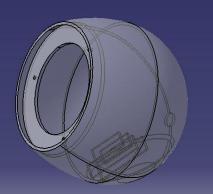

IRIE VIEIIL

COMMUNICANT

BOX - AMBIANCE

Damien Lenci Romain Giraud Vincent Hivin Christopher Coquin

Coût matière: 15€


Coût ingénieur: 1500€

Coût machine: 30€

SMARTLIGHT 2010-2011 Coût machine: 90€ Coût matière: 65€ TTC

Coût personnel: 3760€

Total : 3915€

PROJETS 2011-2012

Polytech'Nice-Sophia

Coût Ingénieur: 800e

Coût Technicien: 450e

Coût Matière: 344.75e

Coût Machine: 680e

Coût total: 2274.75e

Projet de co-conception avec les étudiants de nice /2011-2012 / Florian SCHOLZEN

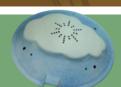
Smartpharcie

Année 2011-2012

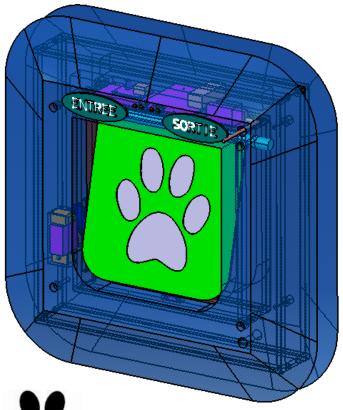
Prévoteau Jean-Etienne (IFTS)

Vivier Aurélien (poly-tech NICE)

Vicente Raphael (poly-tech NICE)



COUT : TOTAL= 2160€ RÉEL= 55.77€



Projet de Co-Conception avec Polytech' Nice-Sophia Nicolas ANTUNES — IFTS 2011/2012

Projet Co-Conception

2011 - 2012

Personnel: 2615 €

Usinage (machine): 198 €

Matériaux: 19 €

TOTAL:

CFAO:

Procédé:

CATIA V5 Strato-conception

CANIAUX Jean-Baptiste

PROJETS 2013-2014

Soutenu par Oséo, la Région Champagne-Ardenne et le Conseil Général des Ardennes

CE QU'IL FAUT ENCORE FAIRE?

- Création des comptes adhoc
- o Réflexion sur les objets
- CdCf
- Premiers essais avec Sketchup ou 123Design