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• Trondheim	&	Oslo,	Norway

• Largest	research	organization	in	Scandinavia
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Mobile	apps	&	Cloud	Computing
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Cloud	computing
“A	computing	model	enabling	ubiquitous	network	access	to	a	shared	and	
virtualised	pool	of	computing	capabilities	(e.g.,	network,	storage,	
processing,	and	memory)	that	can	be	rapidly	provisioned	with	minimal	
management	effort”

--source:	NIST

http://youtu.be/QJncFirhjPg
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Cloud	computing	in	short
• Large-scale and	accessible on	demand	resources

• Network

• Storage

• Compute

• Software

• Available via	Web	service	calls	through the	Internet

• Short- or	long-term	access	on	a	pay	per	use	basis
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Optimize	IT	capacity	to	the	load
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Elasticity	and	Scalability

• Scalability: the	ability of	a	service	to	sustain variable	workload while
fulfilling quality of	service	(QoS)	requirements,	possibly by	consuming
a	variable	amount of	underlying resources.	

• Elasticity:	the	ability of	a	service	to	rapidly provision	and	deprovision
underlying resources on	the	fly.	

One	does not	guarantee the	other!
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Benefits:

• Scalability

• Performances

• Availability

• Cost?

Challenges:

• Interoperability

• Vendor	lock-in

• Legal	aspects	(e.g.,	data	location,	
ownership	etc.)

• Predictability

• Self-adaptation
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The	cloud	computing	stack
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Deployment	model

• Private	Cloud
• Owned	by	the	organization.	Said	to	be	more	secure	as	the	storage	and	processing	stays	
under	the	organization	control

• E.g.,	OpenStack,	Cloud	Foundry

• Public	Cloud
• Hosted	at	the	provider	premises,	who	is	in	charge	of	its	maintenance	and	management

• E.g.,	AWS,	Azure

• Hybrid	Cloud
• Composition	of	two	or	more	public	and	private	cloud
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Typical	Pipeline
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Classical	architecture
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Some	cloud	services

• Firebase(https://codelabs.developers.google.com/codelabs/firebase-android/#0)
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• AWS	Device	Farm
• Test	your	app	against	mobile	devices	in	
the	cloud!

• AWS	S3
• File	storage

• AWS	DynamoDB
• No-SQL	database

• AWS	Pinpoint
• Push	notifications

• AWS	Cognito
• Authentication	service

• AWS	IoT
• Software	suite	for	building	IoT apps

Some	cloud	services
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Containers

http://blog.infinit.sh/the-missing-piece-in-containers-storage/16



Fog	Computing

[Cisco]	Fog	Computing	and	the	Internet	of	Things:	Extend	the	Cloud	to	Where	the	Things	Are	
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Why	fog	computing?

• Location	aware

• Geographical distribution	

• Mobility

• Large	number of	nodes

• Low latency --source:	cisco
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Smartphones?

Can	be	a	phone!
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Crowd	sourcing:	CITI-SENSE

• FP7	EU	project
(http://www.citi-sense.eu)

• Objective:	Build	sensor-based	observatory	communities	for	
Improving	quality	of	life	in	cities

• One	scenario:	
• Equip	people	with	sensors	and	use	their	smartphones	as	a	gateway	to	upload	the	
measurements	in	the	cloud	for	analysis

• Publish	observations	(their	perception	of	the	environment)20



Architecture
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Server	side	patterns	for	improving	data	
uploading	performances	
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Write	Proxy	Pattern

• Problem: Some	cloud	services	require	the
usage	of	specific	protocols	(e.g.,	HTTP	as
a	communication	protocol).	
As	a	result	writing	speed	can	be	slow

• Solution: pass	the	data	to	a	proxy	first.

--source:	http://en.clouddesignpattern.org/index.php/CDP:Write_Proxy_Pattern
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Patterns	for	data	synchronization	and	
storage

• Storage
• Partial	storage

• Complete	storage

• Synchronization
• Asynchronous Data	Synchronization

• Synchronous Data	Synchronization

--source:	https://www.dre.vanderbilt.edu/~schmidt/PDF/PatternPaperv11.pdf24



Partial	Storage

• Problem: Network	bandwidth	and	storage	
space	are	two	vital	concerns	for	mobile	
application	design.	 Synchronize	and	store	
data	only	as	needed	to	optimize	network	
bandwidth	and	storage	space	usage.	

• Solution: Data	is	synchronized	dynamically	
“on-demand”	by	triggers	in	the	application,	
most	typically	using	a	variant	of	the	Virtual	
Proxy	pattern.
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Asynchronous	data	synchronization

• Problem: Synchronous	calls	might	introduce	latency	and	degrade	
user	experience.
• What	might	happen	on	Android:	

• Android	performs	a	callback,	

• which	takes	30s	to	get	a	reply,	

• before	that	Android	proposes	to	kill	the	app

• Solution:	Perform asynchronous calls
• On	Android:	

• AsyncTask

• Runnable

Since	version	3.0	d’Android	(API	11),	it is forbidden to	
perform network	calls	from the	main	thread.
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AsyncTask

1. onPreExecute: Initialisation.

2. doInBackground: This	methods	is	started	in	a	Thread	and	is	suppose	to	be	
the	one	that	actually	does	the	job.	In	our	context:	open	the	connection,	send	the	
request,	retrieve	the	result	and	close	the	connection.

3. onProgressUpdate: Update	about	the	progress	of	the	job	– e.g.,	to	
update	a	progress	bar.

4. onPostExecute: This	method	is	called	once	the	AsynTask is	done.	In	our	
context:	do	something	with	the	result	of	the	request	and/or	transmit	it.
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AsyncTask

• A	generic	class	defined	by	three	generic	types,	which	are	Classes!	(no	
->	void,	int).

• AsyncTask<Params,	Progress,	Result>	
• Params:	Type	of	parameter	of	doInBackground
• Progress:	Type	of	parameter	of	onProgressUpdate
• Result:	Type	of	parameter	of	onPostExecute

• To	be	used	via	sub-classes.
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AsyncTask

• To	start	a	task:
new myAsyncTask(something).execute(“url1.com”, “url2.com”)

• Execute	returns	void,	thus,	if	the	result	is	not	meant	to	be	processed	
in	the	onPostExecutemethod,	one	should	use	a	listener.
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Mixing	partial	storage	and	asynchronous	
transfer	for	uploading	high	velocity	data

• E.g.,	Smartphone	as	a	gateway	that	gather	data	from	sensors	
(internal	+	external)	and	upload	it	on	a	cloud-based	data	store.

In	background:
1. Manage	connections	to	sensors

2. Retrieve	data	and	store	it	locally

3. Provide	access	to	recent	data

4. On	a	regular	basis	upload	chunk	of	data	to	the	cloud

5. If	upload	successful	remove	data	from	local	storage
30



TP

1. Store	Files	on	AWS	S3
• Bucket:	lecture-epu

• Cognito id:eu-west-1:0cab6e17-78a7-4d97-ac68-77b543f21caa

2. In	parallel	store	bulks	of	sensor	data	on	Firebase	realtime db

3. In	parallel	store	bulks	of	sensor	data	on	CouchDB:
http://XXX:5984
1. GPS	location,	plus	others

2. Feel	free	to	select	the	sensor	you	want

4. Add	markers	on	Google	Map
• Activate	Android	Map	
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AWS	S3
• Concepts:	Store	files	in	Buckets	deployed	in	a	specific	region

• Manifest.xml
<service android:name="com.amazonaws.mobileconnectors.s3.
transferutility.TransferService” android:enabled="true" />

• Create	S3	client	&	Transfer	tool
AmazonS3 s3 = new AmazonS3Client(credentialsProvider);

TransferUtility transferUtility = new TransferUtility(s3, APPLICATION_CONTEXT);

• Upload/download
TransferObserver observer = transferUtility.upload(

MY_BUCKET,     /* The bucket to upload to */

OBJECT_KEY,    /* The key for the uploaded object */

MY_FILE        /* The file where the data to upload exists */

);
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AWS	S3
• Check	status	of	Download/Upload

transferObserver.setTransferListener(new TransferListener(){

@Override

public void onStateChanged(int id, TransferState state) {

// do something

} 

@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {

int percentage = (int) (bytesCurrent/bytesTotal * 100);

//Display percentage transfered to user

} 

@Override

public void onError(int id, Exception ex) {

// do something

} 

});
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More details on:
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/s3transferutility.html



Firebase
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Firebase
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Firebase
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Firebase
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Firebase
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https://firebase.google.com/docs/database



Google	map
• Manifest.xml

<uses-feature
android:glEsVersion="0x00020000"
android:required="true"
/>

<meta-data
android:name="com.google.android.maps.v2.API_KEY"
android:value="AIzaSyDajV01lxlQeTCchInMYpvtnIBoGOf8iFM"
/>

<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"
/>

• Get	SHA1
• Mac	OS/Linux

• keytool -list	-v	-keystore ~/.android/debug.keystore -alias	androiddebugkey -storepass android	-keypass android

• Windows
• keytool -list	-v	-keystore "%USERPROFILE%\.android\debug.keystore"	-alias	androiddebugkey -storepass android	-keypass android
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