
Environnement logiciels pour	
l’informatique mobile

Mobile	applications	&	Cloud	Computing

Nicolas	Ferry	(SINTEF)

10th January	2018

• Trondheim	&	Oslo,	Norway

• Largest	research	organization	in	Scandinavia

2

Mobile	apps	&	Cloud	Computing

Presentation

Business

Data

Presentation

Business

Data

Presentation

Business

Data

Cl
ou

d
Ph

on
e

Cl
ou

d

Ph
on

e Ph
on

e

3

Cloud	computing
“A	computing	model	enabling	ubiquitous	network	access	to	a	shared	and	
virtualised	pool	of	computing	capabilities	(e.g.,	network,	storage,	
processing,	and	memory)	that	can	be	rapidly	provisioned	with	minimal	
management	effort”

--source:	NIST

http://youtu.be/QJncFirhjPg
4

Cloud	computing	in	short
• Large-scale and	accessible on	demand	resources

• Network

• Storage

• Compute

• Software

• Available via	Web	service	calls	through the	Internet

• Short- or	long-term	access	on	a	pay	per	use	basis

5

Optimize	IT	capacity	to	the	load

TIME

IT
 C

A
PA

C
IT

Y

Actual Load

Allocated
IT-capacities

“Waste“ IT
Capacities

“Under-supply“ IT
Capacities

Fixed Cost of
IT-capacities

Load Forecast

Courtesy of Microsoft6

Elasticity	and	Scalability

• Scalability: the	ability of	a	service	to	sustain variable	workload while
fulfilling quality of	service	(QoS)	requirements,	possibly by	consuming
a	variable	amount of	underlying resources.	

• Elasticity:	the	ability of	a	service	to	rapidly provision	and	deprovision
underlying resources on	the	fly.	

One	does not	guarantee the	other!

7

Vertical Horizontal

Scalability

8

Benefits:

• Scalability

• Performances

• Availability

• Cost?

Challenges:

• Interoperability

• Vendor	lock-in

• Legal	aspects	(e.g.,	data	location,	
ownership	etc.)

• Predictability

• Self-adaptation

9

Benefits	and	challenges

The	cloud	computing	stack

Applications

Data

Run-time

OS

Virtualisation

Servers

Storage

Network

Applications

Data

Run-time

OS

Virtualisation

Servers

Storage

Network

Applications

Data

Run-time

OS

Virtualisation

Servers

Storage

Network

C
on
su
m
er

Pr
ov
id
er

C
on
su
m
er

Pr
ov
id
er Pr
ov
id
er

IaaS PaaS SaaS

10

Deployment	model

• Private	Cloud
• Owned	by	the	organization.	Said	to	be	more	secure	as	the	storage	and	processing	stays	
under	the	organization	control

• E.g.,	OpenStack,	Cloud	Foundry

• Public	Cloud
• Hosted	at	the	provider	premises,	who	is	in	charge	of	its	maintenance	and	management

• E.g.,	AWS,	Azure

• Hybrid	Cloud
• Composition	of	two	or	more	public	and	private	cloud

11

Typical	Pipeline

Data	distribution
(Message	broker)

Stream	Processing Data	Storage Batch	processingUser	auth
Data	distribution
(Message	broker)

Stream	Processing Data	Storage Batch	processing

12

Classical	architecture

13

Some	cloud	services

• Firebase(https://codelabs.developers.google.com/codelabs/firebase-android/#0)

14

• AWS	Device	Farm
• Test	your	app	against	mobile	devices	in	
the	cloud!

• AWS	S3
• File	storage

• AWS	DynamoDB
• No-SQL	database

• AWS	Pinpoint
• Push	notifications

• AWS	Cognito
• Authentication	service

• AWS	IoT
• Software	suite	for	building	IoT apps

Some	cloud	services

15

Containers

http://blog.infinit.sh/the-missing-piece-in-containers-storage/16

Fog	Computing

[Cisco]	Fog	Computing	and	the	Internet	of	Things:	Extend	the	Cloud	to	Where	the	Things	Are	

17

Why	fog	computing?

• Location	aware

• Geographical distribution	

• Mobility

• Large	number of	nodes

• Low latency --source:	cisco

18

Smartphones?

Can	be	a	phone!

19

Crowd	sourcing:	CITI-SENSE

• FP7	EU	project
(http://www.citi-sense.eu)

• Objective:	Build	sensor-based	observatory	communities	for	
Improving	quality	of	life	in	cities

• One	scenario:	
• Equip	people	with	sensors	and	use	their	smartphones	as	a	gateway	to	upload	the	
measurements	in	the	cloud	for	analysis

• Publish	observations	(their	perception	of	the	environment)20

Architecture

Accelerometer

GPS

Light	Sensor

Temperature

Bluetooth

Light	
Sensor

Bluetooth

Temperature

Bluetooth

Car	battery

Bluetooth

Cloud Storage

21

Server	side	patterns	for	improving	data	
uploading	performances	

22

Write	Proxy	Pattern

• Problem: Some	cloud	services	require	the
usage	of	specific	protocols	(e.g.,	HTTP	as
a	communication	protocol).	
As	a	result	writing	speed	can	be	slow

• Solution: pass	the	data	to	a	proxy	first.

--source:	http://en.clouddesignpattern.org/index.php/CDP:Write_Proxy_Pattern
23

Patterns	for	data	synchronization	and	
storage

• Storage
• Partial	storage

• Complete	storage

• Synchronization
• Asynchronous Data	Synchronization

• Synchronous Data	Synchronization

--source:	https://www.dre.vanderbilt.edu/~schmidt/PDF/PatternPaperv11.pdf24

Partial	Storage

• Problem: Network	bandwidth	and	storage	
space	are	two	vital	concerns	for	mobile	
application	design.	 Synchronize	and	store	
data	only	as	needed	to	optimize	network	
bandwidth	and	storage	space	usage.	

• Solution: Data	is	synchronized	dynamically	
“on-demand”	by	triggers	in	the	application,	
most	typically	using	a	variant	of	the	Virtual	
Proxy	pattern.

25

Asynchronous	data	synchronization

• Problem: Synchronous	calls	might	introduce	latency	and	degrade	
user	experience.
• What	might	happen	on	Android:	

• Android	performs	a	callback,	

• which	takes	30s	to	get	a	reply,	

• before	that	Android	proposes	to	kill	the	app

• Solution:	Perform asynchronous calls
• On	Android:	

• AsyncTask

• Runnable

Since	version	3.0	d’Android	(API	11),	it is forbidden to	
perform network	calls	from the	main	thread.

26

AsyncTask

1. onPreExecute: Initialisation.

2. doInBackground: This	methods	is	started	in	a	Thread	and	is	suppose	to	be	
the	one	that	actually	does	the	job.	In	our	context:	open	the	connection,	send	the	
request,	retrieve	the	result	and	close	the	connection.

3. onProgressUpdate: Update	about	the	progress	of	the	job	– e.g.,	to	
update	a	progress	bar.

4. onPostExecute: This	method	is	called	once	the	AsynTask is	done.	In	our	
context:	do	something	with	the	result	of	the	request	and/or	transmit	it.

27

AsyncTask

• A	generic	class	defined	by	three	generic	types,	which	are	Classes!	(no	
->	void,	int).

• AsyncTask<Params,	Progress,	Result>	
• Params:	Type	of	parameter	of	doInBackground
• Progress:	Type	of	parameter	of	onProgressUpdate
• Result:	Type	of	parameter	of	onPostExecute

• To	be	used	via	sub-classes.
28

AsyncTask

• To	start	a	task:
new myAsyncTask(something).execute(“url1.com”, “url2.com”)

• Execute	returns	void,	thus,	if	the	result	is	not	meant	to	be	processed	
in	the	onPostExecutemethod,	one	should	use	a	listener.

29

Mixing	partial	storage	and	asynchronous	
transfer	for	uploading	high	velocity	data

• E.g.,	Smartphone	as	a	gateway	that	gather	data	from	sensors	
(internal	+	external)	and	upload	it	on	a	cloud-based	data	store.

In	background:
1. Manage	connections	to	sensors

2. Retrieve	data	and	store	it	locally

3. Provide	access	to	recent	data

4. On	a	regular	basis	upload	chunk	of	data	to	the	cloud

5. If	upload	successful	remove	data	from	local	storage
30

TP

1. Store	Files	on	AWS	S3
• Bucket:	lecture-epu

• Cognito id:eu-west-1:0cab6e17-78a7-4d97-ac68-77b543f21caa

2. In	parallel	store	bulks	of	sensor	data	on	Firebase	realtime db

3. In	parallel	store	bulks	of	sensor	data	on	CouchDB:
http://XXX:5984
1. GPS	location,	plus	others

2. Feel	free	to	select	the	sensor	you	want

4. Add	markers	on	Google	Map
• Activate	Android	Map	

31

AWS	S3
• Concepts:	Store	files	in	Buckets	deployed	in	a	specific	region

• Manifest.xml
<service android:name="com.amazonaws.mobileconnectors.s3.
transferutility.TransferService” android:enabled="true" />

• Create	S3	client	&	Transfer	tool
AmazonS3 s3 = new AmazonS3Client(credentialsProvider);

TransferUtility transferUtility = new TransferUtility(s3, APPLICATION_CONTEXT);

• Upload/download
TransferObserver observer = transferUtility.upload(

MY_BUCKET, /* The bucket to upload to */

OBJECT_KEY, /* The key for the uploaded object */

MY_FILE /* The file where the data to upload exists */

);
32

AWS	S3
• Check	status	of	Download/Upload

transferObserver.setTransferListener(new TransferListener(){

@Override

public void onStateChanged(int id, TransferState state) {

// do something

}

@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {

int percentage = (int) (bytesCurrent/bytesTotal * 100);

//Display percentage transfered to user

}

@Override

public void onError(int id, Exception ex) {

// do something

}

});
33

More details on:
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/s3transferutility.html

Firebase

34

Firebase

35

Firebase

36

Firebase

37

Firebase

38

https://firebase.google.com/docs/database

Google	map
• Manifest.xml

<uses-feature
android:glEsVersion="0x00020000"
android:required="true"
/>

<meta-data
android:name="com.google.android.maps.v2.API_KEY"
android:value="AIzaSyDajV01lxlQeTCchInMYpvtnIBoGOf8iFM"
/>

<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"
/>

• Get	SHA1
• Mac	OS/Linux

• keytool -list	-v	-keystore ~/.android/debug.keystore -alias	androiddebugkey -storepass android	-keypass android

• Windows
• keytool -list	-v	-keystore "%USERPROFILE%\.android\debug.keystore"	-alias	androiddebugkey -storepass android	-keypass android

39

