
1

A Survey of adaptation systems
Keling DA #1, Marc DALMAU #2, Philippe ROOSE #3

UPPA, LIUPPA, IUT de Bayonne
2, Allee du Parc Montaury 64600 Anglet FRANCE

1 kda;2 dalmau;3 roose@univ-pau.fr

Abstract—Development of ubiquitous applications is inherently
complex. Adaptation system is a solution for ubiquitous comput-
ing. It enhances the efficiency of application by the adaptation of
software, facilitates application development, and offers a good
user experience. Adaptation system is faced with challenges of
different research domain including context modeling, situation
identification, context reasoning, and adaptation decision. In this
paper we discuss the architecture design of adaptation system
and the taxonomy of its key technologies in details including
communication middleware, context management middleware,
adaptation middleware, adaptation platform, application model
and software engineering, we analyze and introduce these tech-
nologies with the most well-know ubiquitous projects. At the end,
we introduce future research directions according to structural
adaptation.

Index Terms—Ubiquitous computing, Adaptation, Context-
aware Middleware, Dynamic reconfiguration

I. INTRODUCTION

”The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until
they are indistinguishable from it.” Mark Weiser [112]

Ubiquitous computing1 was proposed by Mark Weiser in
September 1991. ”Ubiquitous computing is the method of
enhancing computer use by making many computers avail-
able throughout the physical environment, but making them
effectively invisible to the user” [113].

According to the definition of ubiquitous computing, which
must be pervasiveness, convenience and adaptable. The future
applications of ubiquitous computing face with a heteroge-
neous and dynamic environment. They must be able to adapt
and react dynamically to the environment (heterogeneous
hardware and software environment) and context [84] (user
and environment context).

Currently, increasing numbers of personal smart-devices
(e.g. iPhone, Android smartphone and tablets etc.), home
smart-devices (e.g. Smart-TV, Cook robot, etc.) and small
smart-devices. These devices have powerful computing re-
sources and network connectivity (e.g. 3G or 4G network,
Urban Wi-Fi network). We now stand at the beginning of the
”one person, many computers” age, which is called the third
wave2. At the software level point of view, these smart-devices
are still individual and their resources didn’t have an efficient
high-level management. According to the requirements of

1Ubiquitous computing: now also called Pervasive Computing or UbiComp.
In this article we use the terms ’ubiquitous’ and ’pervasive’ interchangeably.

2The wave in computing: the first ware is one computer, many people; the
second wave is one person, one computer.

ubiquitous computing, the future software must be adapted
to the environment and to the user needs. Adaptation systems
are one solution to adapt software to the environment in order
to achieve ubiquitous computing.

Adaptability raises complex scientific problems and new
challenges to the software development and execution. For
example, how to collect the context information in a highly
dynamic and distributed environment, how to adapt appli-
cation to a mobile environment in order to provide good
performances, how applications can cope with heterogeneous
infrastructures and fully benefit from the environments ca-
pabilities and so on. An adaptation system for ubiquitous
computing should be able to provide proper solutions to the
above questions. Adaptation systems in ubiquitous computing
have four different roles: Context manager role, Middleware
role, Adaptation plan provider role and Decisional role. Each
role has different challenges that will be developed in the
next section. Adaptation system acts on two levels: applica-
tion level adaptation and system level adaptation. Application
level adaptation means that the adaptation will happen only
on applications. The adaptation system provides adaptation
services to the application but the system itself cannot react
to the environment. Web service-based systems act often at
the application level adaptation. The problem is if a mobile
device looses the network connection, it also looses all the
adaptation services. System level adaptation means that the
system is able to adapt itself as applications do. It is called
Adaptable system or Autonomous platform like is the MUSIC
platform [85]. The system level adaptation allows the system
itself to run on each device not just on a server. It can provide
more powerful and more flexible adaptation services, because
it already is inside the execution environment.

The goal of this article is to do a survey of the challenges
of adaptation platforms for Ubiquitous Computing. The paper
is organized in five sections. We begin with presenting an
overview of adaptation systems. Next, we present an adap-
tation systems state-of-the-art. Section 4 discusses the future
requirements of adaptation platforms, and concluding remarks
are in section 5.

II. OVERVIEW OF ADAPTATION SYSTEM

This section describes the main principles of software
adaptation for ubiquitous computing. At the beginning of this
adaptation platform’s survey, we will present what means
adaptation in pervasive computing. Next, we will discuss
adaptation platforms and their role in ubiquitous computing.

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2

Author manuscript, published in "International Journal on Internet and Distributed Computing Systems 2, 1 (2011) 1-18"

http://hal.archives-ouvertes.fr/hal-00689773
http://hal.archives-ouvertes.fr


2

At the end of this section, we will present some related
approaches.

A. What is adaptation?

The word adaptation means ”Any change in the structure
or functioning of an organism that makes it better suited to
its environment.”3. Therefore, according to this definition, the
software adaptation has two levels of action: changing the
structure and changing the function. These changes aim to
make the application better suited to its evolving context.
The context means the operating environment and user’s uti-
lization environment. The operating environment includes any
information observable by the software system, such as end-
user input, external hardware devices and sensors, program
instrumentation, and network infrastructure [76]. The user’s
utilization environment means anything about the user, which
includes user’s intents, user’s context information.

1) Why and when we need adaptation?: There are three
raisons to adapt application [25]. Each raison defines an
adaptation type. These three raisons are: Reactive adaptation,
Evaluative adaptation and adaptation for integration. Reactive
adaptation accommodates applications to changes in their
environment. They change the behavior of the application
according to execution environment changes due to context or
user preference change. Evaluative adaptation aims to extend
the functionality of an application, to correct its errors or to
increase its performance. When the QoS (Quality of Service)
change, it may launch an evaluative adaptation. The user’s
preferences changes also can launch such adaptation. Adap-
tation for integration deals with the problem of integration of
incompatible services or components (i.e. different hardware
or software interfaces, different protocols and so on). This type
of adaptation is often launched after an adaptation decision
has been done. For example, the first adaptation is launched
by context changes. Due to the execution of this adaptation,
a component can no more communicate with another one
because they have different security protocol. In this case, the
system will launch an adaptation for integration.

Moreover, there are three ways to decide when to launch an
adaptation: Context-driven, QoS-driven and User-driven. They
often work together, but with different priorities in different sit-
uations (depending on adaptation motivations and application
intents). Context-driven analyzes all the context information
and takes the decision when it receives a context-changing
event. Reactive adaptation aims context-driven analysis. QoS-
driven works on QoS events and it is more concerned by the
quality of the whole system. In the evaluative adaptation, QoS-
driven has priority. User-driven adaptation only concerns about
users’ modifications of system options or users’ preferences.
It generally has the highest priority.

2) Adaptation loop : The general adaptation loop of an
adaptive software system includes the environment observa-
tion, the selection of adaptations and their execution. We call
it the CADA loop (Collection, Analysis, Decision and Action)
in this article. Figure 1 describes the adaptation management.

3The adaptation definition comes from the Oxford Dictionary of Science.

Fig. 1. CADA Adaptation loop [33]

Fig. 2. CADA general Architecture

In this feedback loop, human can be involved or the system
can be fully autonomous.

The context collector first collects information on the op-
erating environment from the operating system and the user
context. This information is called Meta context information.
Then, the collector exploits this Meta context information to
build the high-level context model. This high-level context
model is a highly abstract model that represents the context
information. The analyzer evaluates the context information
and produces an adaptation plan. It can produce a list of plans
or just one plan. The decider analyses the risk of each plan
and takes the adaptation decision. Finally the Actor executes
the adaptation as described by the chosen adaptation plan.
The core of adaptation is the Analyzer and the Decisioner.
Collector and Actor are only collaborators. The core is like
the human brain, and the collaborators are like the sensory
nerves and limbs. (see Figure 2 )

In next two sections, we discuss different types of adaptation
at different points of view. The first is the level of adaptation
point of view and the second is the realization of adaptation
point of view.

3) Self-self vs Supervised Adaptation: At the level of adap-
tation point of view (i.e. adaptable software architecture), there
are two types of adaptation.

Self-self-adaptation: application manages the adaptation.
The core and all the collaborators are included into the
application. This kind of autonomous applications adapts itself

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



3

Fig. 3. Self-self approaches of adaptation

Fig. 4. Supervised approaches for adaptation

without external support. (see Figure 3) It needs neither
adaptation platform nor adaptation middleware (usually the
middleware supports a part of the adaptation service, like
the context collector, and the adaptation actor,). The self-
self-adaptation application developer cannot easily reuse its
adaptation code. Each application proposes its own adaptation
solution. Therefore, in this article we don’t consider such
adaptation.

Supervised adaptation: the platform manages adaptations.
(see Figure 4) Adaptation is transparent for applications.
Platform may include the core and all collaborators or just
the core (a Decisioner and an intelligent analyzer) then the
core uses the collaborators that are offered by third part
providers. The core provides intelligent analysis and decision.
And usually, the collaborators are provided as services. It can
be a combination of collaborators. For example, the platform
can have one local context collector, which uses different
context collectors to achieve the users’ context collection.
These collaborators take care of the mechanism part of the
context collection, communication, adaptation and so on.
For example, middleware adaptation actor is in charge of

all the transparency of distributed adaptation operations and
of all cross platform/OS/language adaptation operations. It
doesn’t have any intelligence. The Supervised adaptation has
the advantage that application developers do not need to be
concerned by adaptation; they can focus on the application’s
business logic. The challenge of such platforms is about how
to make the right decisions for all different applications in all
situations.

4) Structural and Behavioral adaptation: The adaptation
platform distinguishes two adaptation categories at the real-
ization of adaptation point of view: structure and behavior
changes [6]. Structural Adaptation: The structure of the pro-
gram itself changes (program includes application, platform
and middleware). For Component-based system, the change
can concern the composition of components by adding or re-
moving components. In addition the migration of components
is included: changing the running host of a component and
dynamically linking it to others components. The migration
operation needs to keep the coherency of the components
states before and after. For Service-based systems, the change
concerns the configuration of services. Like SAMProc [96],
some platform or middleware support service migration. Struc-
tural adaptation distinguishes two kinds of abilities: con-
figurability and reconfigurability. The configurability is the
ability to modify the structure of a system in order to place
it into a variety of configurations [49]. Some researchers
highlighted the runtime aspect of configurability by using the
term reconfigurability [19].

Behavioral Adaptation: It concerns the change of the be-
havior of the program. That means adding or removing some
functions or changing their QoS. In addition it may be possible
to use equivalent functions of services/components to replace
existing services/components. The behavior change is also
called functional adaptation. In the thesis of An P.K. [60]
he use the term ”functional adaptation” when the system
functionality is modified by the adaptation; otherwise the
adaptations are called non-functional adaptations.

As pointed out by Oreizy et al. [76], ”Changes can in-
clude the addition, removal, or replacement of components
and connectors, modifications of the configuration or pa-
rameters of components and connectors and alterations in
the component/connector network’s topology.” All adaptation
mechanisms (both structure change and behavior change) are
based on four basic operations: add, delete, link and unlink.
For example to replace a component by another, we need to
execute four operations: unlink - delete - add - link. Therefore
a system that can dynamically accomplish these four basic
operations is a system supporting adaptation. However we
will add two operations: saving and loading states, which are
indispensable to achieve component or service migration.

As we mentioned above the adaptation system is one
solution for ubiquitous computing. Next we will present what
are an adaptation system and its roles in ubiquitous computing.

B. What is an adaptation system?

An adaptation system is a system providing application
adaptation according to the environment. In an adaptation

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



4

system, there is a middleware and an adaptation platform.
An adaptation middleware is a middleware providing some
mechanisms to achieve adaptation tasks. It is also a layer that
manages heterogeneity, communication and context collection.
In addition an adaptation platform is also a system providing
intelligent analysis, planning heuristics and smart decision
services. In an infrastructure point of view, there are two
different adaptation systems.

1) Local and distributed adaptation system: Local: a local-
based system running on a single computer. Applications run-
ning on the system can be distributed, but all the components
of the system are deployed on one computer. It looks and
acts like a centered adaptation server, which provides context
collection service, adaptation plan service and so on. The main
disadvantage of such a system is that it cannot adapt itself to
the changing of the environment in a distributed network. A
centered adaptation server can have a very limited number
of clients because of bottlenecks such as network bandwidth,
computing resources and storage resources. Such adaptation
services are very frequently used operations and they are high
resources consumer services.

Moreover, they need powerful computing resources to pro-
vide real-time performance. In this condition, because of such
bottlenecks, a single server is not suitable to guarantee good
performance. Therefore, it is not a good solution for ubiquitous
computing.

Distributed: a distributed system supports system level adap-
tation. The autonomous system must be a distributed one. A
distributed system can deploy its components over a network.
It is called the adaptation domain on the MUSIC platform
[85]. They defined a notion of system core. The core has
a minimum functionality that allows components’ life-cycle
control and components’ deployment. The MUSIC platform
deploys the core into the adaptation domain on each device.
Moreover the system can adapt itself as applications do.

Local or centralized adaptation systems have the same roles
in pervasive computing that the next section will present.

2) Role of the adaptation system: In ubiquitous computing
adaptation systems have four roles. As mentioned above the
four roles are Context Manager, Planner, Decisioner and
Middleware (see Figure 2). There are two types of role:
collaborator role and core role. Just like in the adaptation
loop’s steps that we described above. Collaborator role is not
an imperative ones. On the contrary, according to the definition
of an adaptation system, the Planner role and the Decisioner
role are imperative. They are the core roles, which mean they
are a part of the system and the system implicitly uses them.
The others parts can be replaced by the middleware.

Context Manager: this is a collaborator role. System needs
to collect context information and to build high-level context
models. Context information may come from different devices
or different software systems and even from some social
networks. Hence, the system may use a context middleware to
achieve the collection and the model construction. However,
the system can also deploy the context manager as a compo-
nent (or service) and distribute it in the adaptation domain.

Planner: the system needs to dynamically produce adapta-
tion plans at runtime. A planning heuristic is used to determine

Fig. 5. Architecture of an adaptation system for ubiquitous computing

the best configuration of an application. The reasoning is based
on context information.

Decisioner: with the list of adaptation plans produced by the
heuristic, the system analyzes the risk of each plan, takes the
decision and asks the actor to execute the changes. Role of the
Middleware: adaptation system hides the heterogeneity of the
network and the software environment; it supports advanced
coordination models among distributed entities; and finally it
makes the distribution as transparent as possible [53].

Next section we will present technologies that are used to
adaptation systems.

III. TECHNOLOGIES OF ADAPTATION SYSTEMS

According to the literature, we propose general adapta-
tion system architecture (see Figure 5), which is n layers
architecture. From bottom to top, there are the hardware
layer, the operating system layer, the adaptation layer and the
applications layer. The hardware layer present mobile devices,
computers network equipment and so on. On top of hardware
layer is operating system layer (OS layer), it presents operating
systems like Windows, Linux, iOS [8], and Android [40].

The adaptation platform layer provides intelligent analysis
and decision-making whereas the middleware contains a dif-
ferent composition of elements; both of them constitute the
adaptation layer. At the top, it is the application layer. These
applications will be supervised and manipulated by adaptation
system. The Application Model concerns the applications layer
and the adaptation layer. It can be different or same model for
application and adaptation system. In this chapter we will fo-
cus on the adaptation system and application model describing
their responsibility, their composition, the technologies applied
and the relationship between each other.

According to this general architecture, we propose the tax-
onomy of adaptation systems’ technologies shown in Figure 6.
And we will present each technology in this chapter from left
to right by the order that we show in the figure. Next presents
begin with Communication Middleware.

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



5

Fig. 6. Overview of adaptation systems’ technologies

Fig. 7. Communication Middleware technologies

A. Communication middleware

Communication middleware is the base of the distributed
systems. Adaptive application and upper layer’s of the mid-
dleware use communication middleware to achieve the intra-
application communication and the communication between
applications. Communication middleware has already been
discussed in the traditional middleware domain. Therefore we
will only discuss three popular communication mechanisms:
event-based communication, TupleSpace-based communica-
tion and connector-based communication. (see Figure 7)

Event-based mechanism allows communication by events.
Events can be filtrated, can set up timeout and can be classified
by topics. Event-based mechanism decouples the communica-
tion from the time-space and the control flow. Event-based
mechanism supports Multi-points communications, intermit-
tent networks and Ad hoc networks. Gaia [81] , DREAM [63],
Milan [80], [36] and Siena [24] are event-based approaches.

TupleSpace mechanism allows communicating with shared
memory. TupleSpace is like a white board. Message producer
put messages into the tuple space and consumer reads them

from the tuple space. Tasks can generate asynchronous re-
quests. TupleSpace provides a common public data structure
to support communication, which is called Tuple. Often it is
used as key-value pair. The ubiquitous middleware in TOTA
[68] and MESHMdl [51] use TupleSpace mechanism for
communication.

Connector-based mechanism allows communication with
connectors. On a component-based system, connector act like
data containers. Connectors provide a unified I/O interface
for components. So application components are not concerned
by remote communications. The connector takes care of this
part of operation. Connectors can also offer some advanced
functions. For example, a user (player 1) uses his cell phone
to play a game with another user (player 2) though a Bluetooth
connection. Next, because player 2 moves the Bluetooth
connection is lost. The connector can use the SRD service
(Service Resource Discovery service) to find a computer that
can connect to player 2 though Bluetooth and to player 1
through Wi-Fi. Then the connector uses this computer as a
proxy to connect the two players. Of course, the whole recon-
nection operations are transparent for the users. Kalimucho
[32] uses such type of communication middleware, which
is called Korrontea [22]. It is a distributed connector-based
communication middleware.

Moving towards the next row of Communication Mid-
dleware, section 3.2 will present these Context Middleware
technologies.

B. Context Middleware
Integrating physical space and information space into ap-

plication can make application’s complexity and developing

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



6

Fig. 8. Context middleware technologies

Fig. 9. Context model

difficulty increase. In addition, it compromises code reuse.
The context middleware needs to take care of the context
collection, aggregation, and analysis operations and to provide
a mechanism for context notification to application and/or
adaptation platform.

In this section we will present technologies involve in Con-
text Middleware: Context Model, Context Collection, Context
Aggregation and Context Notification. (see Figure 8)

1) Context Model: Context model is the format used by
the context middleware to provide context information for
the upper layer. This model must be structured, consistent,
decomposable, assemblable and extensible. In [99], in the
point of view of data structure, they divide the context model
into 6 categories (Key-value models, Markup Scheme models,
Graphical Models, Object Oriented Models, Logic Based
Models and Ontology Based Models). In [16], they describe
3 types of current approaches of context modeling: Object-
role, Spatial, Ontology-based and hybrid. These three types of
context model are the most popular in nowadays ubiquitous
computing. (see Figure 9)

Object-role model: ”Common to object oriented context
modeling approaches is the intention to employ the main ben-
efits of any object oriented approach - namely encapsulation
and reusability - to cover parts of the problems arising from the
dynamics of the context in ubiquitous environments” [99]. It
makes the dynamics of the early context modeling approaches,
such as key-value pairs, inadequate. Such approaches are
the cues [94] (It is developed within TEA project.), Active
Object Model [30] and CML (Context Modelling Language)
[46] etc. Combined with graphical models like ORM (Object-
Role Model), ORM supports both analysis and design of
the context requirements and relational representations and
grammars for high-level context abstractions. It provides more
comprehensive support for capturing and evaluating imperfect
and historical information than many of other context model-
ing approaches [16].

Spatial model: In real world, people often ask these ques-
tions on a mobile phone or use their smart phone to figure

out answers of these questions: ”Where are you?” ”Where
can we meet?” ”Where am I?” etc. In ubiquitous computing
location and nearby resources are very important. Thus, space
and location is a vital factor for context. Schilit, Adams and
Want define context as ”Where you are, who you are with and
what resources are nearby”[93]. The spatial model concerns
location information. There are two kinds of coordinate sys-
tems to present location information: Geometric coordinates
and Symbolic coordinates. Geometric coordinates represents
points or areas in a metric space, such does the GPS system.
Usually the GPS sensor is the main equipment in this aim.
Symbolic coordinates represent the location by an identifier,
such as the location of a sensor, the location of a wireless
hotspot, a room number, a building id etc. A camera, a cell
phone or something else can be the collecting equipment.
Augmented Word Model is developed in the Nexus project
[73] this model that both have a geometric coordinate system
and a symbolic location system. Spatial model needs model-
ing both location and relationships of objects. The location
information needs to include a Point (Point of object) and a
Range. That allows locating other objects in the range that
is called Nearest Neighbor [16]. As mentioned before, the
spatial models are well suited for ubiquitous computing. The
weakness of these kinds of models is that they only concern the
location emphases. Thus, researchers have mixed this model
with others to build hybrid models, such as Spatial + Object-
based model [73] and Spatial + Ontology-based model [38].

Ontology based model: it offers good ability and facilitates
the realization of reasoning; recently, it has been extensively
used. The concept of Ontology comes from the philosophy. It
refers to the explanation of an objective existent system. Studer
et al. defined Ontology, as: ”An ontology is a formal, explicit
specification of a shared conceptualization” [100]. Ontology
could be represented by several methods, such as natural
or logical language. In the web semantic domain, there are
mainly two description languages to represent ontologies: RDF
(Resource Description Framework) and OWL (Ontology Web
Language). Nowadays Ontology-based context middleware
often use OWL for the context model, such do COSMOS
[23], CoBrA [27], SOCAM [44]. CoBrA while SOCAM
middleware adopts respectively the SOUPA [28] and CONON
[122] ontologies. Gaia [81] middleware uses the DAML+OIL
ontology language (a predecessor of OWL) to construct the
context model. This model is used to represent high-level con-
text information for context reasoning. The context collector
collects raw data from sensors from which complex context
data will be constructed by the context aggregator with OWL,
then provided to the context analyzer.

Before discussing hybrid model we present a comparison
table of the three models we discussed above. Partial satis-
faction of the requirements is shown as ’∼’ in the table. Full
satisfaction is shown as ’+’, and none satisfaction is ’–’.

Hybrid model: Why do we need a hybrid model? The most
common answer to this question is when existing solutions
are not satisfactory. Thus, mixing these unperfected solutions
allows finding a better representation. These context models
have different emphases and weaknesses as shown in Table I.
There are some ways to mix these models, such as: Henricksen

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



7

Object-role Spatial Ontological
Heterogeneity + ∼ +

Mobility ∼ + –
Relationships ∼ ∼ +

Timeliness + + –
Imperfection ∼ ∼ –
Reasoning ∼ – +
Usability + ∼ ∼
Efficiency ∼ + –

TABLE I
COMPARISON OF CONTEXT MODELING APPROACHES WITH CONTEXT

REQUIREMENTS [16]

et al. [50], CARE [1] framework, Spatial + Object-based
model [73] and Spatial + Ontology-based model [38] and
COSMOS [23].

2) Context Collection: The goal of context collection is in
any equipment, any OS to effectively collect the information
about resource’s running state, work performance and so on.
Furthermore, for user-centric context collection we also need
to collect user geographical location, surrounding resources
and equipment and time through a variety of ways. Context
collection provides a software abstraction layer of sensors to
the upper layer or directly to the application, such as Context
Toolkit [88] does. Context Toolkit abstracts sensors as Widgets
in the middleware; all Widgets provide a unified interface.
Similar approaches are SOCAM’s Context Provider [43],
CoBrA’s Context Acquisition Components [26] and EEM’s
Context Representer [64].

Dealing with actual context definition, context collection
also includes the collection of information about how users uti-
lize their environment, such as information on social networks:
e.g., what kind of color they like, what are their hobbies, and
their favorite food. In [120] and [91] a technology to resolve
these problems is presented.

The role of context collection in adaptation system is to
provide meta-context information for every parts of the system.

3) Context Aggregation: The goal of context aggregation is
to filter, analyze and build the high-level context information.
After that it will translate this low-level context information
(called raw data) into the context model as high-level context
information. Such high-level context information will help to
simplify the task of context analysis and reasoning in the
adaptation middleware. Ontology based context middlewares
transform raw data to a unified OWL described context model.
To eliminate the inaccuracy and conflicts of raw data, the con-
text aggregator will have many interactions with the context
reasoner. The context reasoner, in the general architecture that
we mentioned before, is located in the adaptation platform
layer. However, in a system without adaptation platform,
the context reasoner is usually included in the independent
context-aware middleware.

4) Context Notification: The ways to notify the upper layer
about context changes are generally divided into active and
passive notification. In the active notification when context
change the upper layer is notified immediately, generally by
using an event-based notification mechanism. In the passive
notification when the upper layer needs to check the context

Context Model Context Aggregation
Object-role Spatial models Ontology based models

Active Object Model X
CARE X X
CoBrA X

Context Toolkit X X
COSMOS X X X
A. Frank X X

GAIA X X
Nearest Neighbor X

SOCAM X X

TABLE II
COMPARISON OF CONTEXT MIDDLEWARES

changes it calls the context API. In that aim it requests a
database or read a context log file or uses a ”white board”
communication mechanism such as TupleSpace which pro-
vides a logical shared memory with a good performance.

Context-driven systems generally use the event-based notifi-
cation. The event-based mechanism provides good extensibil-
ity, scalability and low coupling. For example Context Toolkit
and Gaia [81] use this mechanism.

In a distributed adaptation system using event-based notifi-
cation the context middleware is concerned by what messages
must be notified and what must not be; and also to whom
these messages have to be sent. Of course, different types of
application have different emphasis; this implies that message
selection and message destination will be different. When us-
ing event-based notification Context middleware will provide
some pre-analyze mechanism to suit to these different em-
phasis of applications. When using white board mechanisms,
the communication middleware needs to be able to decide
what messages will be deleted after a certain delay and what
messages must be persistent.

In next section, moving forward to Adaptation middleware.
It has four technique categories: Adaptation mechanism, Re-
source discovery, Adaptation-oriented Human-Computer Inter-
face, and Data storage mechanism.

C. Adaptation middleware

Adaptation middlewares should provide some basic
adaptive-oriented services and adaptation mechanisms. These
basic adaptive-oriented services must be able to be highly
configurable for QoS and dynamically removable and addable.
In addition, the management of these services is the under the
responsibility of the adaptation platform and the application
needs not to be concerned by that. Adaptation mechanisms
are core services that the adaptation middleware must pro-
vide. Adaptation mechanisms directly relate to the application
model and the development method. For example, if the
adaptation middleware provides a micro-kernel mechanism for
adaptation, the application model will be a component-based
or a hybrid model. If the mechanism is AOP based (Aspect-
oriented programming) the development method must be AOP
too.

Figure 10 presents these adaptation mechanisms and
adaptive-oriented services. We will describe them in detail
next. We begin with Adaptation Mechanism.

1) Adaptation mechanism: This part of technology is
relatively mature. The adaptation platform supervises their
application relies on reflection technologies. Reflection and

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



8

Fig. 10. Adaptation middleware technologies

Fig. 11. Adaptation mechanism

dynamic module loading technologies are the most popular
mechanisms for adaptation systems. As defined by Bobrow
et al. [20] Reflection implies the ability of a software system
to observe and reason about its own state and to modify its
own execution. There are two categories of Dynamic module
loading technologies: Micro-kernel and AOP. (see Figure 11)

Micro-kernel technology uses the experience of micro-
kernels OS. In [18] is presented the concept of ”Operating
systems as application programs”. Only the basic functions
are loaded into the kernel, other functions will be loaded at
runtime as independent modules. Dealing with this concept
there are several micro-kernel dynamic module-loading plat-
forms, such as OSGi [3]. For ubiquitous computing, several
platforms are based on this technology, such as MUSIC [85]
platform, BASE [15] and MundoCore [2].

AOP [61] technology is a software engineering approach
that enables separation of crosscutting, such as QoS, secu-
rity, fault tolerance, and logging. AOP development obliges
developers to predefine join-points, cut-points and advices. A
join-point is a point in a program where additional behavior
can be joined. A Cut-point is a description of a join point. An
Advice is some additional behavior, a piece of code that can
run before, after, and around join-points. Advices are weaved
into the program when a join-point is matched with a cut-
point. The weaving is the mechanism for integrating advices.
It can happen at either compile or run time. WComp [108] is
a typical AOP-based adaptive middleware; it used a concept
specific named Aspect of Assembly for adaptation.

On the other hand, Service-based technology is a popular
technology to realize adaptation middlewares. Service-oriented
systems provide flexibility in handling and dynamicity and
suitability for the integration of new devices. These systems
always support cross-languages, cross-software-platforms and
cross-hardware abilities. A service description only concerns
what this service uses, never how this service realized. These
abilities exactly suit Ubiquitous-computing requirements, such
as heterogeneity, scalability, security, mobility, and discov-

Micro Kernel AOP Service-based
Aura X

AxSel X
BASE X

CAPUCCINO X X
DoAmI X

Gaia X
Kalimucho X

Mundo Core X
MUSIC X X X
RCSM X

SAMProc X
VieDAME X
WComp X X

TABLE III
COMPARISON OF ADAPTATION MIDDLEWARE WITH ADAPTATION

MECHANISMS

Fig. 12. Resource Discovery

ery [108]. Service-based technology is used for adaptation
middlewares with several different implementations, such as
Web services, REST (Representational State Transfer) or
CORBA services and customized services. CAPUCCINO [83],
VieDAME [72], SAMProc [96] and WComp are Web-service
based middlewares. DoAmI uses CORBA services only. Gaia
[81] , Aura [98] uses customized services.

However, there are several hybrid solutions such as SCA
[75]. CAPUCCINO is based on SCA, and WComp is based
on a SCA-like architecture, which is named SLCA [108] and
mixes SCA and AOP.

2) Resource Discovery: An adaptive oriented application is
a location-based and distributed application. A lot of code will
be distributed on remote devices during the run time of such
applications. In addition, location-based application means that
the user location’s changing will trigger the changing of the ap-
plication context and it will change the environment resources.
Therefore the resource discovery becomes a necessary service.
The resource discovery includes: Hardware resource discovery
and Service resource discovery. (see Figure 12)

Hardware resource discovery services (HRD services) are
mainly use by Wi-Fi or Bluetooth (SDP Service Discovery
Protocol) to discover the actual environment hardware re-
sources.

Service resource discovery services (SRD service) use the
surrounding hardware and the Internet to discover the services.

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



9

Fig. 13. Data storage

When a user changes its geographical position, the SRD
service will discover the services that are provided by the
surrounding hardware or use the surrounding hardware to
connect the Internet to achieve this discovery. Therefore the
SRD service needs a users’ geographical location service to
find the user’s position. This service can use (or combine)
multiple technologies (like Wi-Fi, GPS, 3G Network, etc.)
in order to find the user’s position. It’s called location-based
discovery. On the other hand, SRD services exploit the Internet
to discover Web services, which is called web-based discovery.

3) Adaptive oriented Human Computer Interface (HCI):
Users’ moving will bring an uncertainty of context during
application runtime. Therefore the platform needs to provide a
HCI service that will decouple the application’s business logic
code and the HCI code. In order to better support migration of
application between different devices, the HCI service needs
to use cross OS and cross device HCI technologies. The most
commonly used HMI technology is HTML.

4) Data storage mechanism: Applications need to store and
share their data and to search into stored data. In a distributed
environment, how to guarantee that applications can get fast
access to data at any time and everywhere? Generally there
are tree possible ways: File system, Database and Cloud
storage. File system is used in Gaia’s CFS [81]. Databases are
the best solution for different purposes because they include
access and privacy mechanisms. On the contrary Cloud storage
needs Internet access and data privacy is always a problem.
However, Cloud storage can suit to self-adaptive platforms.
(see Figure 13)

In this section we discussed the four technique categories
of Adaptation middleware, next we will present Adaptation
platform and its techniques.

D. Adaptation Platform

This is the core of an adaptation system. It can support
several types of autonomy, from fully automatic self-contained
to human-in-the-loop [76]. It can be distributed or centralized.
It is responsible for analyzing and taking adaptation decisions.
It provides intelligent analysis, planning heuristics and smart
decision services. According to its responsibilities and its
definition, we summarized the technologies of adaptation
platforms into 2 categories, which are Adaptation analysis and
Adaptation decision. (see Figure 14)

We will introduce techniques are used in Adaptation anal-
ysis in section 3.4.1 and in section 3.4.2 we will present
Adaptation decision techniques.

Fig. 14. Adaptation Platform

Fig. 15. Adaptation Analysis

1) Adaptation Analysis (Situation reasoning): What is the
current situation? It is the basic information we need to know
and that will guide us to take a decision. Before taking
a decision, the human brain will analyze the environment,
objects, etc. It is called problem analysis, which is the process
to identify the situation. It helps our brain to take a decision
[59]. The adaptation platform simulates this process to help
the system to take adaptation decisions. Thus, situation rea-
soning is a very infancy research area. Researchers defined a
situation as an external semantic interpretation of sensor data
in context-aware applications [33]. To deal with this definition,
there are two kinds of categories of techniques: Specification-
based and Learning-based techniques (see Figure 15), which
allow constructing situation models that can be used toby the
adaptation system (see Figure 16).

Specification-based techniques In early times, the relation-
ships between raw data context information and situations
were easy to establish because there were a few sensors.
Specification-based approaches are mainly situation identifi-
cation techniques. There are several logic rules based ap-
proaches, such as formal logic model [65] and spatial-temporal
logic [31], which support efficient reasoning. They have been
widely applied, thanks to their powerful representation on-
tologies and reasoning capabilities. Recently Ontology rea-
soning is extensively used, as we mention before. Formal
logic coordinates with ontology context models to provide a
standard vocabulary of concepts and semantic relationships
to infer situation. To model and identify the real world the
uncertainty must be considered. To deal with this uncertainty,
traditional logic-based techniques need to be incorporated with
other probabilistic techniques [45]. Fuzzy logic and Dempster-
Shafer theory have been applied to solve this problem [5], [52],
[69].

Learning-based techniques There are four branches
for learning-based techniques: Bayesian derivative models,
Grammar-based, Information entropy, and Pattern Mining.

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



10

Fig. 16. Development of the main situation identification techniques corresponding to the increasing complexity of problem descriptions [120]

Bayesian derivative models are very famous and include two
kinds of approaches. One is an encoding causal relation-
ships model, such as Nave Bayes [78], [104] and Bayesian
networks [42]; the other is the an encoding temporal rela-
tionships model, such as Dynamic Bayesian network [55],
Hidden Markov Models [116], [48] and Conditional Random
Fields [110], [56]. Grammar-based approaches are applied for
representing the complex structural semantics of processes
into hierarchical situations [71], [87], [109]. Decision trees
[14], Neural Networks [119] and Support Vector Machines
[77], [54] are built on information entropy. Whatever actual
Learning-based techniques need a lot of training data to set
up a model and estimate its parameters [107].

2) Adaptation decision: Adaptation decision is generally
divided into static approach, dynamic approach and Artificial
Intelligence approach. The static approach needs to predefine
and implement the adaptation logics. Different kinds of appli-
cation have different particular emphasis; therefore these self-
adaptation logics are widely divergent. The adaptive middle-
ware cannot be able to predefine all self-adaptation logics for
all applications. Due to the kind of middleware, using a static
way to generate adaptation logic often implies that application
manages its own self-adaptation logic. That means that the
application developer needs to create self-adaptation logic for
each specific application. The middleware just provides the
context-awareness and the adaptation mechanisms. It runs as
a framework. According to our readings, we found six different
approaches which are: 1) Algorithm-based adaptation logic, 2)
Policy-based adaptation, 3) Planning-based adaptation logic, 4)
Automata-based adaptation logic, 5) Graph-based adaptation
logic, and 6) Artificial Intelligence. (see Figure 17)

Algorithm-based is a logic that is realized by a chain of
algorithms. After computing, the algorithm will provide a
solution of decision or an adaptation plan in a given time.
The algorithm can be dynamically changed during runtime;
Dynaco framework provides this dynamic adaptability. Andr
et al. proposed an algorithm to dynamically make master-slave
adaptation based on the Dynaco framework. This algorithm is
based on the description of the behavior of patterns, which

Fig. 17. Adaptation decision

depends on the state of the pattern and the distributed system
and on a QoS objective [7].

Policy-based adaptation logic provides guidance in deci-
sions and actions. The policy management services normally
consists of a policy repository, a set of Policy Decision
Points (PDP) for interpreting the policies, and a set of Policy
Enforcement Points (PEP) for applying the policies [114].
Kephart and Walsh discussed different policy types that can
be exploited in adaptation systems, such as goal policy, action
policy (in the ECA* form) and utility policy [58]. Due to
the dynamic changes of situation in pervasive computing, the
policy also needs to dynamically change. Hence, Lutfyyia et
al. have proposed a control-theoretic technique to deal with
this requirement for adaptation systems. Shi et al. proposed
an ECA-based XML description policy management technique
for their UbiStar adaptation system, which supports runtime
changes and online updates [97]. There are a number of
adaptation systems that adopt policy-based management for

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



11

adaptation planning and decision, for example, [57], [12], [89].
Planning-based In 1995, Russell and Norvig pointed out

that a planning-based adaptation engine needs continuous
planning via contingency planning or re-planning [86]. Plan-
ning has also two aspects in adaptation systems: Observation
planning and Adaptation planning [76]. Observation planner
decides when and where to adapt depending on observed in-
formation (high-level context information). Adaptation planner
determines which adaptation plan needs to be made and when
it must be executed depending on the identified situation. ”It
refers to the reconfiguration capability of an application to
changing operating conditions by exploiting knowledge about
its composition and Quality of Service (QoS) metadata asso-
ciated to its constituting services”. MADAM [39] is a typical
planning-based middleware [35]. MUSIC project adopts this
middleware and extends it.

Graph-based technologies is the use of mathematic graph to
resolve problems such as component deployment dependence,
which can help to decide what nodes can be loaded in
one device depending on available resources. For example,
AxSeL [47] is a graph-based adaptation middleware. AxSeL’s
application is represented as a global, bi-dimensional and
flexible graph of dependencies where nodes represent services
and components. AxSeL uses a graph coloring of dependencies
algorithm with contextual information on nodes of the graph
to proceed for a deployment decision under certain constraints.

A.I. -based is a learning-based technology. It may be useful
in an adaptation deciding process thanks to its rich possibilities
in planning, reasoning and learning. However, actual AI-
based systems encounter some common obstacles such as
quality assurance. Nevertheless, some approaches are already
used into adaptation systems, such as A*-based algorithm,
heuristics, Nave Bayes, Bayesian networks and so on. For
example, CADeComp [11] uses an A* based algorithm to
reduce complexity of the components’ placement problem.
This A* based algorithm allows approaching the optimal
solution. Arshad et al. use AI-planning for self-healing system
[9]. Maes proposed goal-based model for action selection [67].
Tesauro et al. [106], Weyns et al. [115] work on Intelligent-
Agent based Multi-Agent Systems. Some adaptation systems
also adopt some techniques from Machine Learning and Soft
Computing, such as Genetic algorithms and different on-
line learning algorithms. Several researchers highlight rein-
forcement Learning (RL). Amoui et al. considers that RL
can be a promising option for dynamic action selection [4].
Dowling believes it can be use to decentralize collaborative
self-adaptation software [34]. Tesauro thinks that RL has the
potential to achieve better performance in comparison which
traditional methods while requiring less domain knowledge
[105]. There are several methods adopted by adaptation sys-
tems to help decision and adaptation planning, for example,
decision theory, utility theory, and Markov Decision Process
(MDP) and Bayesian network.

3) Summary: Adaptation decision is the most important
part of the system. Adaptation decision deals with the adap-
tation plan problem, the observation-planning problem, the
components placement problem and the making adaptation
decision problem. It needs adaptation analysis to identify the

Fig. 18. Application models of adaptation

Fig. 19. Component-based application model

actual situation and decide adaptation based on the situation.
(see Table IV)

E. Application Model

There are three categories of application models which
are Component-based, Service-based and Hybrid (see Fig-
ure 18). Section 3.5.1 will present Component-based applica-
tion model, Service-based model will be introduced in section
3.5.2, and in section 3.5.3 we will discus Hybrid model. We
will summary in the end of this section.

1) Component-based: Szyperski et al. [103] defined the
component concept as ”a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties”. A component
can be composed with other components by well-defined in-
terfaces that specify what it requires and provides. A software
configuration is a composition of the software components.
In pervasive computing, to adapt component-based software
means to change the software configuration. This application
model provides several features such as binary reusability,
dynamic configurability and dynamic deployment. Thus it is a
popular application model for pervasive software. Depending
on the reflection technique, there are two kinds of component-
based model (see Figure 19):

Container-based reflection: Components are included in
containers, and containers supervise them. The Component
encapsulates the business logic and the container provides non-
functional proprieties. This model can provide a loose coupling
between business logic and non-functional proprieties as, for
example, QoS control and network control. Kalimoucho’s
Osagaia model [21] is a typical Container-based model, see
figure 20.

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



12

Static Algorithm-based Policy-based Planning-based Graph-based A.I.-based
AxSel X

CADeComp X
CAPUCCINO X

Dynaco framework X
GAIA X

Kalimoucho X X
MUSIC X
UbiStar X
WComp X X

TABLE IV
SUMMARY OF ADAPTATION DECISION

Fig. 20. Osagaia Component-based model

Component-based reflection: System provides a unique con-
tainer for all the components of system. This container super-
vises the components thought component reflection technique.
Application is constituted by a composition of components.
Non-functional properties cannot be managed globally by the
system. EJB [101], and .Net [70] are typical approaches of
component-based reflection platforms.

Agent-based model: It’s a component model based on the
agent theory model. Russell and Norving defined an agent as:
”anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through ef-
fectors”. According to this definition, an Intelligent Agent (IA)
is an agent that has an AI behavior, and that can autonomously
interact with its environment. A mobile agent is an agent that
has the ability to transport itself from one system to another
through a network [62]. These agent-based models are often
used to construct Multi-Agent Systems (MAS) [117]. They
encounter one common obstacle: quality assurance. There
are several ubiquitous-oriented agent-based projects such as
MDAgent [121], SpatialAgent [92], UbiMAS [13] and G-net
[118].

2) Service-based: Service in IT area means an entity (e.g. a
component, an application) providing some functionalities that
is used by other entities of the system or other systems and,
maybe, by human beings. Service-based model emphasizes
interface-oriented programming. It provides a loose coupling
between service interfaces and service implementations. There
are several ubiquitous projects that used custom service model,
such as SOCAM, Gaia, and Aura [98]. Web-services are
actual popular services models. It is a W3C standard that
uses WSDL as a description language and SOAP (Simple
Object Access Protocol) to communicate. This kind of models

allows dynamically changing services’ implementation during
runtime.

Researchers proposed several autonomic service-oriented
processes. In 2005 Verma and Sheth [111] proposed Auto-
nomic Web Processes (AWP), which are web-service-based
processes. SAMProc is a middleware for self-adaptive mobile
processes [96]. This middleware allows the application chang-
ing of location and behavior during its lifecycle. They use a
BPEL-like description language to describe their SAM-WS
web-service model.

3) Hybrid: Hybrid approach uses component-based model
to provide services, it’s a good way to construct adaptation
systems compatible with all types of application. It that means
the system is based on a service model and the implementation
of service uses component-based models. Component-based
models can provide fine adaptation granularity and service-
based models can provide good heterogeneity and scalability.
WComp’s SLCA model [108] and Plastic model [10] are such
service-centric approaches.

4) Summary: Between platform and application level, we
can use different application models. For example the MUSIC
platform is constructed by an OSGi component-based model
and provides SOA services for applications. So applications
can be constructed on any model. (see Table V)

Next section will introduce the last raw of taxonomy,
Software Engineering. It will present different technique that
we use today to develop adaptation system.

F. Software Engineering

Adaptation systems can be implemented by different soft-
ware engineering techniques. Object-Oriented Programming
(OOP) is the most popular basic technique for software

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



13

Component-based Service-based Agent-based Hybrid
Aura X

AxSel X
CAPUCCINO X X X

DoAmI X
G-net X
GAIA X

Kalimoucho X
MAS X

MDAgent X
MUSIC X X X

Plastic model X
SAMProc X
SOCAM X

SpatialAgent X
UbiMAS X

VieDAME X
WComp X X X

TABLE V
APPLICATION MODELS

Fig. 21. Software Engineering

engineering; GoF design pattern is a general methodology for
OOP. Component-oriented programming and service-oriented
programming are actual popular programming techniques;
they provide several advanced features for software reusabil-
ity, scalability, and extensibility. Model-Driven Engineering
(MDE) refers to the systematic use of models as the primary
artifact for the engineering of systems [37]. (see Figure 21)

1) OOP (Object-Oriented Programming): The birth of
Object-Oriented Programming can be traced to 1960s. It is a
basic programming paradigm. OOP coordinates with design
patterns that can constitute flexible and reusable solutions
for developing adaptation systems. Design patterns are a
general software engineering methodology for representing
well-known solutions to common and recurring problems in
software design [95].

2) Component-oriented programming: Component-
oriented programming (COP) is also called Component-based
software engineering (CBSE). COP can be coordinated
with component-based model design - or its variants -
for implementing adaptation systems. It is a well-known
programming paradigm that can be exploited for developing
flexible and extensible software systems [103]. Component-
based system can adapt itself by changing components
composition. As we mentioned before, this technique can
be composed with SOA to provide good flexibility and
heterogeneity. OSGi is the most popular component-based
dynamic framework for component-oriented software.

3) AOP (Aspect Oriented Programming): In ubiquitous
computing, AOP technique can be used to encapsulate the

Supervised Centric Distributed
Aura X X

AxSel X X
CADeComp X X

CAPUCCINO X X
DoAmI X
GAIA X X

Kalimoucho X X
MUSIC X X

SAMProc X
SOCAM X X

VieDAME X
WComp X X

TABLE VI
ADAPTATION SYSTEMS CLASSIFICATION I

adaptation described by the aspects. During runtime, aspects
can be dynamically waved into the application code in order
to achieve adaptation. AOP allows implementing fine-grained
adaptation actions at a level lower than components [41], [90].
AspectJ is the most popular framework for Java programming.
JAC is a dynamic AOP framework, which uses wrapping to
dynamically modify or add join-points [82].

4) SOP (Service Oriented Programming): SOP coordinates
with service-based model design or its variants for implement-
ing adaptation system. ”Much of this technology focuses on
the concept of discovery by location: being able to discover
and interact with the objects around you” [17]. SOP can be
implemented by Java with Jini [102] framework, Microsoft
.Net framework [70], Web service and so on. Web service
technology provides flexibility for composition, orchestration,
and choreography [79].

5) MDD (Model Driven Development): Schmidt defined
Model-Driven Engineering, as ”A promising approach to ad-
dress platform complexityand the inability of third-generation
languages to alleviate this complexity and express domain
concepts effectivelyis to develop Model-Driven Engineering
(MDE) technologies”. MDE provides a high-level abstraction
of system that can be directly migrated to cross-platforms.
Model-Driven Architecture (MDA) is an MDE approach pro-
posed by the Object Management Group (OMG) [74]. The
abstracted model is platform independent; it is call PIM
(Platform-independent Model). PIM can be translated to one
or more platform-specific models (PSMs). PSM is specified
for one specific platform.

In the last section of this chapter, we will summary the
different related approaches.

6) Classification of related approaches: We described
above actual technologies in Ubiquitous computing, in this
section we will present several famous related approaches in
Ubiquitous computing with three different classifications.

According to the classification we mentioned before in
section 2.1.3 and section 2.2, we draw the adaptation system
classification table, shown as Table VI. Self-self adaptation is
out of this article; we just classified the supervised adaptation.
But some approaches neither supervised nor the self-self like
SAMProc. It’s because of these approaches are not a complete
adaptation system, i.e. they are just adaptation middleware.

Adaptation systems can be classified according to adaptation

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



14

Architecture-based Parametric-based Aspect-oriented-based
Aura X

AxSel X
CADeComp X

CAPUCCINO X X X
DoAmI X
GAIA X X

Kalimoucho X
MUSIC X X X

SAMProc X
SOCAM X

VieDAME X
WComp X X X

TABLE VII
ADAPTATION SYSTEMS CLASSIFICATION II

Context middleware Adaptation middleware Adaptation platform
Aura X X

AxSel X X
CoBrA X

COSMOS X
CADeComp X X X

CAPUCCINO X X X
DoAmI X
GAIA X X

Kalimoucho X X X
MUSIC X X X

SAMProc X
SOCAM X X

VieDAME X
WComp X X

TABLE VIII
ADAPTATION SYSTEMS CLASSIFICATION III

as: Architecture-based adaptation, Parametric-based adapta-
tion and Aspect-oriented-based adaptation. (see Table VII)
”(m) Any types of adaptation techniques have been devel-
oped: architecture-based adaptation that is mainly concerned
with structural changes at the level of software components,
parametric-based adaptation that leverages policy files or input
parameters to configure the software components, aspect-
oriented-based adaptation that changes the source code of a
running system via dynamic source-code weaving, and so on”
[29].

Adaptation system can also be classified according to
middleware as: Context middleware, Adaptation middleware,
and Adaptation platform. (see Table VIII)We propose this
classification that because these actual projects are usually
called middleware for ubiquitous computing. But they have
so many different. Context middleware is the middleware we
described in section 3.2, Adaptation middleware is described
in section 3.3 and Adaptation platform that we presented in
section 3.4.

IV. CONCLUSION AND PERSPECTIVES

We described technologies that are involved in adaptation
systems and tried to classify and summarize recent adaptation
systems and projects. Engineers design adaptation policies
and adaptation rules at system design time. Most adaptation
systems provide adaptation support service, but they can’t
adapt themselves. Front to these challenges, how to integrate
existing technologies to create a flexible, scalable and extensi-
ble platform architecture that will satisfy ubiquitous adaptation
system’s requirements? This is obviously an interesting re-
search direction. We presented a lot of technologies but it’s not

possible to mix all these ones to build an ubiquitous adaptation
system because several techniques need powerful computation
support. And we cannot use such techniques into embedded
systems.

Adaptation doesn’t only mean dynamic loading/replacement
of software components, I also means satisfying the require-
ments of an application adaptation. The system needs to
dynamically provide some common services, such as en-
cryption/decryption service or user-centric security strategy
services. The system itself and common services will be
dynamically distributed via networks and adaptable (see Fig-
ure 22).

When an adaptation system is based on a micro-kernel
technique, the micro-kernel provides the minimum runtime
services and is deployed on each device. Adaptation service
includes adaptation core and adaptation collaborators, as men-
tioned in section II. The relationship between core and collab-
orators looks like the relationship between human brain and
human body. Adaptation core corresponds to the previously
mentioned adaptive platform that provides intelligent analysis
and smart decision. Adaptation core can be a distributed
network service or can be a single local service running on a
computer. Adaptation collectors mainly correspond to the pre-
viously mentioned context middleware and the various context
collection programs running on different devices. Collection
programs collect raw-data (low-level context information).
Context middleware combined it into a high-level context
model that will help the adaptation core to analyze/identify
the situation and makes an adaptation decision. Adaptation
collectors are distributed via network and run on different
devices. Adaptation actors mainly correspond to the previ-
ously mentioned adaptation mechanism that is included in the
adaptation middleware. The adaptation system micro-kernel
directly acts to manipulate application’s component or service.
It also needs to provide negotiation mechanisms in order to
find the adaptation plan realization’s balance point between
adaptation core and application during adapting the planning
process. Adaptation actors can be local or fully distributed
depending on what adaptation is required. Communication
middleware supports all communications though all the levels
of the adaptation system providing a unified communication
interface.

Pervasive computing involves many technologies. It has
been proposed 20 years ago, however, it is still full of
challenges. These first 20 years are just only the beginning
of pervasive computing. We need a long time to achieve the
pervasive computing that was proposed by Mark Weiser [112].
This is a long-term research area.

Adaptation system is a basic part of pervasive computing.
This paper tried to find common definitions of middleware and
adaptation platform in adaptation systems and proposed taxon-
omy of adaptation-oriented technologies. We introduced and
analyzed these technologies mainly through communication,
context, middleware, adaptation platforms, application models
and software engineering point of view. Furthermore we make
a comparison and summary of some existing pervasive com-
puting projects. Finally we sketched out the trend of adaptation
systems and our future research priorities and directions.

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



15

Fig. 22. Dynamic adaptation distributed system

Fig. 23. Our future researches

As figure 23 point out, our future researches are the
adaptation platform and context aggregation. We have already
the communication middleware: Korrontea, adaptation mid-
dleware: Kalimucho and a part of context middleware are
proposed in [66].

REFERENCES

[1] Agostini, A., Bettini, C., Riboni, D.: Hybrid reasoning in the care
middleware for context awareness. Int. J. Web Eng. Technol. 5, 3–23
(May 2009)

[2] Aitenbichler, E., Kangasharju, J., Mühlhäuser, M.: MundoCore: a light-
weight infrastructure for pervasive computing. Pervasive and Mobile
Computing 3(4), 332 – 361 (2007), middleware for Pervasive Comput-
ing

[3] Alliance, O.: OSGi Technology. OSGi Alliance (2011),
http://www.osgi.org/About/Technology

[4] Amoui, M., Salehie, M., Mirarab, S., Tahvildari, L.: Adaptive action
selection in autonomic software using reinforcement learning. In:
Proceedings of the Fourth International Conference on Autonomic and
Autonomous Systems. p. 175–181. IEEE Computer Society, Washing-
ton, DC, USA (2008)

[5] Anagnostopoulos, C., Ntarladimas, Y., Hadjiefthymiades, S.: Situa-
tional computing: An innovative architecture with imprecise reasoning.
Journal of Systems and Software 80(12), 1993 – 2014 (2007), selected
papers from the International Conference on Pervasive Services (ICPS
2006)

[6] Anastasopoulos, M., Klus, H., Koch, J., Niebuhr, D., Werkman, E.:
DoAmI- a middleware platform facilitating (Re-)configuration in ubiq-
uitous systems. Irvine (2006)

[7] Andre, F., Gauvrit, G., Perez, C.: Dynamic adaptation of the Master-
Worker paradigm. In: Proceedings of the 2009 Ninth IEEE International
Conference on Computer and Information Technology - Volume 02. p.
185–190. CIT ’09, IEEE Computer Society, Washington, DC, USA
(2009)

[8] Apple: About iOS Application Design. Apple (2011),
http://developer.apple.com/

[9] Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic
reconfiguration planning for distributed software systems. Software
Quality Control 15, 265–281 (Sep 2007)

[10] Autili, M., Cortellessa, V., Marco, A.D., Inverardi, P.: A conceptual
model for adaptable context-aware services. Web Services-Modeling
and Testing (WS-MaTe 2006) (June 2006)

[11] Ayed, D., Taconet, C., Bernard, G., Berbers, Y.: CADeComp: context-
aware deployment of component-based applications. Journal of Net-
work and Computer Applications 31(3), 224 – 257 (2008)

[12] Badr, N., Reilly, D., Taleb-Bendiab, A.: Policy-based autonomic control
service. In: Proceedings of the Fifth IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY’04). p.
99–102. IEEE Computer Society (2004)

[13] Bagci, F., Petzold, J., Trumler, W., Ungerer, T.: Ubiquitous mobile
agent system in a P2P- network. In: in UbiSys-Workshop at the Fifth
Annual Conference on Ubiquitous Computing. p. 12–15 (2003)

[14] Bao, L., Intille, S.S.: Activity recognition from user-annotated accel-
eration data. p. 1–17. Springer (2004)

[15] Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: BASE ” a Micro-
Broker-Based middleware for pervasive computing. In: Proceedings of
the First IEEE International Conference on Pervasive Computing and
Communications. p. 443–. PERCOM ’03, IEEE Computer Society,
Washington, DC, USA (2003)

[16] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D.,
Ranganathan, A., Riboni, D.: A survey of context modelling and
reasoning techniques. Pervasive and Mobile Computing 6(2), 161–180
(Apr 2010)

[17] Bieber, G., Architect, L., Ci, I.: Introduction to Service-Oriented pro-
gramming. In: Openwings, URL = http://www.openwings.org (2001)

[18] Black, D., Golub, D.B., Julin, D.P., Rashid, R.F., Draves, R.P., Dean,

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



16

R.W., Forin, A., Barrera, J., Tokuda, H., Malan, G., Bohman, D.:
Microkernel operating system architecture and mach. In: In Proceed-
ings of the USENIX Workshop on Micro-Kernels and Other Kernel
Architectures. p. 11–30 (1992)

[19] Blair, G.S., Coulson, G., Robin, P., Papathomas, M.: An architecture for
next generation middleware. In: Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Distributed
Processing. p. 191–206. Middleware ’98, Springer-Verlag, London, UK
(1998)

[20] Bobrow, D.G., Gabriel, R.P., White, J.L.: CLOS in context: the shape of
the design space. p. 29–61. MIT Press, Cambridge, MA, USA (1993)

[21] Bouix, E., Dalmau, M., Roose, P., Luthon, F.: A multimedia oriented
component model. AINA 2005 - The IEEE 19th International Confer-
ence on Advanced Information Networking and Applications (2005)

[22] Bouix, E., Roose, P., Dalmau, M.: The korrontea data modeling. In:
Proceedings of the 1st international conference on Ambient media and
systems. p. 6:1–6:10. Ambi-Sys ’08, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
ICST, Brussels, Belgium, Belgium (2008)

[23] Bouzeghoub, A., Taconet, C., Jarraya, A., Do, N., Conan, D.: Comple-
mentarity of process-oriented and ontology-based context managers to
identify situations. In: ICDIM. pp. 222–229 (2010)

[24] Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of
a wide-area event notification service. ACM Trans. Comput. Syst. 19,
332–383 (Aug 2001)

[25] Chefrour, D.: Developing component based adaptive applications in
mobile environments. In: Proceedings of the 2005 ACM symposium
on Applied computing. p. 1146–1150. SAC ’05, ACM, New York, NY,
USA (2005)

[26] Chen, H., Finin, T., Joshi, A.: Using OWL in a pervasive computing
broker. Workshop on Ontologies in Agent Systems, AAMAS-2003 (Jul
2003)

[27] Chen, H., Finin, T., Joshi, A.: Semantic web in the context broker
architecture. In: Proceedings of the Second IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom’04). p.
277–. PERCOM ’04, IEEE Computer Society, Washington, DC, USA
(2004)

[28] Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: standard ontology for
ubiquitous and pervasive applications. In: In International Conference
on Mobile and Ubiquitous Systems: Networking and Services. p.
258–267 (2004)

[29] Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Soft-
ware Engineering for Self-Adaptive Systems. Springer-Verlag, Berlin,
Heidelberg (2009)

[30] Cheverst, K., Mitchell, K., Davies, N.: Design of an object model for
a context sensitive tourist GUIDE. In: Computers and Graphics. p.
883–891 (1999)

[31] Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Tech-
nologies, applications, and opportunities. Pervasive and Mobile Com-
puting 5(4), 277–298 (Aug 2009)

[32] Dalmau, M., Roose, P., Laplace, S.: Context aware adaptable applica-
tions - a global approach. CoRR abs/0909.2090 (2009)

[33] Dobson, S., Denazis, S., Fernández, A., Gaı̈ti, D., Gelenbe, E., Mas-
sacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey
of autonomic communications. ACM Trans. Auton. Adapt. Syst. 1,
223–259 (Dec 2006)

[34] Dowling, J.: The decentralised coordination of self-adaptive compo-
nents for autonomic distributed systems. Ph.D. thesis, Department of
Computer Science, Trinity College Dublin (2004)

[35] Eliassen, F., Gj\orven, E., Eide, V.S.W., Michaelsen, J.A.: Evolving
self-adaptive services using planning-based reflective middleware. In:
Proceedings of the 5th workshop on Adaptive and reflective middleware
(ARM ’06). p. 1–. ARM ’06, ACM, New York, NY, USA (2006)

[36] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many
faces of publish/subscribe. ACM Comput. Surv. 35, 114–131 (Jun
2003)

[37] France, R., Rumpe, B.: Model-driven development of complex soft-
ware: A research roadmap. In: 2007 Future of Software Engineering.
p. 37–54. FOSE ’07, IEEE Computer Society, Washington, DC, USA
(2007)

[38] Frank, A.U.: Tiers of ontology and consistency constraints in geo-
graphical information systems. International Journal of Geographical
Information Science 15(7), 667 – 678 (2001)

[39] Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E.,
Hallsteinsen, S., Horn, G., Khan, M.U., Mamelli, A., Papadopoulos,
G.A., Paspallis, N., Reichle, R., Stav, E.: A comprehensive solution

for application-level adaptation. Softw. Pract. Exper. 39, 385–422 (Mar
2009)

[40] Google: What is android. Google (2011),
http://developer.android.com/guide/basics/
what-is-android.html

[41] Greenwood, P., Blair, L.: Using dynamic Aspect-Oriented programming
to implement an autonomic system. Tech. rep., Proceedings of the 2003
Dynamic Aspect Workshop (DAW04 2003), RIACS (2003)

[42] Gu, T., Pung, H.K., Zhang, D.Q., Pung, H.K., Zhang, D.Q.: A bayesian
approach for dealing with uncertain contexts (2004)

[43] Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for
building context-aware services. J. Netw. Comput. Appl. 28, 1–18 (Jan
2005)

[44] Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-
based context model in intelligent environments. In: IN PROCEED-
INGS OF COMMUNICATION NETWORKS AND DISTRIBUTED
SYSTEMS MODELING AND SIMULATION CONFERENCE. p.
270–275 (2004)

[45] Haghighi, P.D., Krishnaswamy, S., Zaslavsky, A., Gaber, M.M.: Rea-
soning about context in uncertain pervasive computing environments.
In: Proceedings of the 3rd European Conference on Smart Sensing and
Context. p. 112–125. EuroSSC ’08, Springer-Verlag, Berlin, Heidelberg
(2008)

[46] Halpin, T.: Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design. The Morgan Kaufmann Series
in Data Management Systems (2001)

[47] Hamida, A.B., Mouël, F.L., Frénot, S., Ahmed, M.B.: Déploiement
adaptatif d’applications orientées services sur environnements
contraints. Technique et Science Informatiques 30, 59–
91 (2011), d.2.12.1: Distributed objects, D.: Software/D.4:
OPERATING SYSTEMS/D.4.2: Storage Management/D.4.2.0:
Allocation/deallocation strategies, C.: Computer Systems Organi-
zation/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.4:
Distributed Systems/C.2.4.1: Distributed applications, C.2.1.10:
Wireless communication

[48] Hasan, K., Rubaiyeat, H.A., Lee, Y., Lee, S.: A reconfigurable HMM
for activity recognition (2008)

[49] Heimbigner, D., Wolf, A.L., Heimbigner, D., Wolf, E.L., Wolf, E.L.:
Intrusion management using configurable architecture models. Tech.
rep. (2002)

[50] Henricksen, K., Livingstone, S., Indulska, J.: Towards a hybrid ap-
proach to context modelling, reasoning and interoperation. In: Proceed-
ings of First International Workshop on Advanced Context Modelling,
Reasoning And Management (2004)

[51] Herrmann, K., Mühl, G., Jaeger, M.A.: MESHMdl event spaces –
a coordination middleware for self-organizing applications in ad hoc
networks. Pervasive and Mobile Computing 3(4), 467–487 (Aug 2007)

[52] Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., Devlin,
S.: Evidential fusion of sensor data for activity recognition in smart
homes. Pervasive and Mobile Computing 5(3), 236–252 (Jun 2009)

[53] Issarny, V., Caporuscio, M., Georgantas, N.: A perspective on the
future of middleware-based software engineering. In: 2007 Future of
Software Engineering. p. 244–258. FOSE ’07, IEEE Computer Society,
Washington, DC, USA (2007)

[54] Kanda, T., Glas, D.F., Shiomi, M., Ishiguro, H., Hagita, N.: Who will
be the customer?: a social robot that anticipates people’s behavior from
their trajectories. In: Proceedings of the 10th international conference
on Ubiquitous computing. p. 380–389. UbiComp ’08, ACM, New York,
NY, USA (2008)

[55] Kasteren, T.v., Krose, B.: Bayesian activity recognition in residence for
elders. In: Intelligent Environments, 2007. IE 07. 3rd IET International
Conference on. pp. 209–212 (2007)

[56] Kasteren, T.v., Noulas, A., Englebienne, G., Kröse, B.: Accurate
activity recognition in a home setting. In: UbiComp ’08: Proceedings
of the 10th international conference on Ubiquitous computing. pp. 1–9.
ACM, Seoul, Korea (2008)

[57] Keeney, J., Cahill, V.: Chisel: a policy-driven, context-aware, dy-
namic adaptation framework. In: Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. pp. 3–14 (2003)

[58] Kephart, J., Walsh, W.: An artificial intelligence perspective on au-
tonomic computing policies. In: Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE International
Workshop on. pp. 3–12 (2004)

[59] Kepner, C.H., Tregoe, B.B.: The Rational Manager: A Systematic
Approach to Problem Solving and Decision-Making. McGraw-Hill
(1965)

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



17

[60] Khac, A.P.: A Model-driven Feature-based Approach to Runtime Adap-
tation of Distributed Software Architectures. Ph.D. thesis, Computer
Science Department, TELECOM Bretagne (2010)

[61] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J., Irwin, J., Akşit, M., Matsuoka, S.: Aspect-oriented
programming. In: ECOOP’97 — Object-Oriented Programming, vol.
1241, pp. 220–242. Springer-Verlag (1997)

[62] Lange, D.B., Mitsuru, O.: Programming and Deploying Java Mobile
Agents Aglets. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edn. (1998)

[63] Leclercq, M., Quéma, V., Stefani, J.: DREAM: a component framework
for the construction of resource-aware, reconfigurable MOMs. In: Pro-
ceedings of the 3rd workshop on Adaptive and reflective middleware.
p. 250–255. ARM ’04, ACM, New York, NY, USA (2004)

[64] Lim, S., Helal, A.: Encapsulation and Entity-Based approach of in-
terconnection between sensor platform and middleware of pervasive
computing. In: Ubiquitous Computing Systems, Lecture Notes in
Computer Science, vol. 4239, pp. 500–515–515. Springer Berlin /
Heidelberg (2006)

[65] Loke, S.W.: Incremental awareness and compositionality: A design
philosophy for context-aware pervasive systems. Pervasive and Mobile
Computing 6(2), 239–253 (Apr 2010)

[66] Louberry, C., Roose, P., Dalmau, M.: Kalimucho: Contextual de-
ployment for qos management. DAIS’11 - 11th IFIP International
Conference on Distributed Applications and Interoperable Systems
(June 2011)

[67] Maes, P.: Situated agents can have goals. Robotics and Autonomous
Systems 6(1-2), 49–70 (Jun 1990)

[68] Mamei, M., Zambonelli, F.: Programming pervasive and mobile com-
puting applications with the TOTA middleware. In: Proceedings of
the Second IEEE International Conference on Pervasive Computing
and Communications (PerCom’04). p. 263–. PERCOM ’04, IEEE
Computer Society, Washington, DC, USA (2004)

[69] Mckeever, S., Ye, J., Coyle, L., Bleakley, C., Dobson, S.: Activity
recognition using temporal evidence theory. J. Ambient Intell. Smart
Environ. 2, 253–269 (Aug 2010)

[70] Microsoft: Microsoft .NET Framework. Microsoft (2011),
http://www.microsoft.com/net/default.aspx

[71] Moore, D., Essa, I.: Recognizing multitasked activities from video
using stochastic context-free grammar. In: Eighteenth national confer-
ence on Artificial intelligence. p. 770–776. American Association for
Artificial Intelligence, Menlo Park, CA, USA (2002)

[72] Moser, O., Rosenberg, F., Dustdar, S.: VieDAME - flexible and robust
BPEL processes through monitoring and adaptation. In: Companion of
the 30th international conference on Software engineering. p. 917–918.
ICSE Companion ’08, ACM, New York, NY, USA (2008)

[73] Nicklas, D., Mitschang, B.: The nexus augmented world model:
An extensible approach for mobile, Spatially-Aware applications. In:
Proceedings of the 7th International Conference on Object-Oriented
Information Systems. pp. 392–401 (2001)

[74] OMG: Model Driven Architecture (MDA) Specification. OMG (2010),
http://www.omg.org/mda/specs.htm

[75] OpenSOA: Service component architecture specifications
(2007), http://www.osoa.org/display/Main/
Service+Component+Architecture+Specifications

[76] Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D., Wolf, A.: An Architecture-
Based approach to Self-Adaptive software (1999)

[77] Patel, S., Robertson, T., Kientz, J., Reynolds, M., Abowd, G.: At the
flick of a switch: Detecting and classifying unique electrical events on
the residential power line (Nominated for the best paper award). In:
UbiComp 2007: Ubiquitous Computing, pp. 271–288 (2007)

[78] Patterson, D., Liao, L., Fox, D., Kautz, H.: Inferring High-Level
behavior from Low-Level sensors. In: UbiComp 2003: Ubiquitous
Computing, pp. 73–89 (2003)

[79] Peltz, C.: Web services orchestration and choreography. Computer
36(10), 46–52 (2003)

[80] Picco, G.P., Cugola, G., Murphy, A.L.: Efficient Content-Based event
dispatching in the presence of topological reconfiguration. In: Proceed-
ings of the 23rd International Conference on Distributed Computing
Systems. p. 234–. ICDCS ’03, IEEE Computer Society, Washington,
DC, USA (2003)

[81] Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.:
Use of ontologies in a pervasive computing environment. Knowl. Eng.
Rev. 18, 209–220 (Sep 2003)

[82] Renaud, P., Lionel, S., Laurence, D., Gérard, F.: Jac: A flexible solution
for aspect-oriented programming in java. Lecture notes in computer
science (2001)

[83] Romero, D., Rouvoy, R., Seinturier, L., Chabridon, S., Conan, D.,
Pessemier, N.: Enabling Context-Aware web services: A middleware
approach for ubiquitous environments. In: Sheng, M., Yu, J., Dustdar, S.
(eds.) Enabling Context-Aware Web Services: Methods, Architectures,
and Technologies, pp. 113–135. Chapman and Hall/CRC (2010)

[84] Roose, P.: De la réutilisation à l’adaptabilite. Tech. rep., Université de
Pau et des Pays de l’Adour (2008)

[85] Rouvoy, R., Beauvois, M., Lozano, L., Lorenzo, J., Eliassen, F.:
MUSIC: an autonomous platform supporting self-adaptive mobile ap-
plications. In: Proceedings of the 1st workshop on Mobile middleware:
embracing the personal communication device. p. 6:1–6:6. MobMid
’08, ACM, New York, NY, USA (2008)

[86] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (2nd
Edition). Prentice Hall (Dec 2002)

[87] Ryoo, M., Aggarwal, J.: Recognition of composite human activities
through Context-Free grammar based representation. Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on 2,
1709–1718 (Oct 2006)

[88] Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the
development of context-enabled applications. In: Proceedings of the
SIGCHI conference on Human factors in computing systems: the CHI
is the limit. pp. 434–441. CHI ’99, ACM, New York, NY, USA (1999)

[89] Salehie, M., Li, S., Asadollahi, R., Tahvildari, L.: Change support
in adaptive software: A case study for Fine-Grained adaptation. In:
Proceedings of the 2009 Sixth IEEE Conference and Workshops on
Engineering of Autonomic and Autonomous Systems. p. 35–44. IEEE
Computer Society, Washington, DC, USA (2009)

[90] Salehie, M., Li, S., Tahvildari, L.: Employing aspect composition
in adaptive software systems: a case study. In: Proceedings of the
1st workshop on Linking aspect technology and evolution. p. 17–21.
PLATE ’09, ACM, New York, NY, USA (2009)

[91] Santos, A.C., Cardoso, J.M., Ferreira, D.R., Diniz, P.C., Cha?nho, P.:
Providing user context for mobile and social networking applications.
Pervasive and Mobile Computing 6(3), 324–341 (Jun 2010)

[92] Satoh, I.: Physical mobility and logical mobility in ubiquitous comput-
ing environments. In: Proceedings of the 6th International Conference
on Mobile Agents. p. 186–202. MA ’02, Springer-Verlag, London, UK,
UK (2002)

[93] Schilit, B.N., Adams, N., Want, R.: Context-Aware computing appli-
cations. In: IN PROCEEDINGS OF THE WORKSHOP ON MOBILE
COMPUTING SYSTEMS AND APPLICATIONS. p. 85–90. IEEE
Computer Society (1994)

[94] Schmidt, A., Beigl, M., w. Gellersen, H.: There is more to context than
location. Computers and Graphics 23, 893–901 (1998)

[95] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Net-
worked Objects. Wiley (2000)

[96] Schmidt, H., Hauck, F.J.: SAMProc: middleware for self-adaptive
mobile processes in heterogeneous ubiquitous environments. In: Pro-
ceedings of the 4th on Middleware doctoral symposium. p. 11:1–11:6.
MDS ’07, ACM, New York, NY, USA (2007)

[97] Shi, D., Ding, B., Yin, G., Feng, J., Wang, H.: Research on policy-
driven software self-adaptation mechanism. Journal of Frontiers of
Computer Science and Technology 4(2), 115–123 (2010)

[98] Sousa, J.a.P., Garlan, D.: Aura: an architectural framework for user
mobility in ubiquitous computing environments. In: Proceedings of the
IFIP 17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture: System Design, Development
and Maintenance. pp. 29–43. WICSA 3, Kluwer, B.V., Deventer, The
Netherlands, The Netherlands (2002)

[99] Strang, T., Popien, C.: A context modeling survey. In: Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp
2004 - The Sixth International Conference on Ubiquitous Computing
(2004)

[100] Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering:
principles and methods. Data Knowl. Eng. 25, 161–197 (Mar 1998)

[101] Sun: JSR 220:Enterprise JavaBeansTM. Sun, version 3 edn. (2005)
[102] Sun: Jini framework. Sun (2007)
[103] Szyperski, C.: Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edn. (2002)

[104] Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home
using simple and ubiquitous sensors. In: In Pervasive. p. 158–175
(2004)

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2



18

[105] Tesauro, G.: Reinforcement learning in autonomic computing: A man-
ifesto and case studies. IEEE Internet Computing 11(1), 22–30 (2007)

[106] Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley,
I., Kephart, J.O., White, S.R.: A Multi-Agent systems approach to
autonomic computing. In: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume
1. p. 464–471. AAMAS ’04, IEEE Computer Society, Washington, DC,
USA (2004)

[107] Thomson, G., Terzis, S., Nixon, P.: Situation determination with
reusable situation specifications. In: Proceedings of the 4th annual IEEE
international conference on Pervasive Computing and Communications
Workshops. p. 620–. PERCOMW ’06, IEEE Computer Society, Wash-
ington, DC, USA (2006)

[108] Tigli, J., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo, D.,
Callegari, E., Riveill, M.: WComp middleware for ubiquitous com-
puting: Aspects and composite event-based web services. Annals of
Telecommunications 64(3), 197–214–214 (Apr 2009)

[109] Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine
recognition of human activities: A survey. Circuits and Systems for
Video Technology, IEEE Transactions on 18(11), 1473–1488 (2008)

[110] Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for
activity recognition. In: Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems. p. 235:1–235:8.
AAMAS ’07, ACM, New York, NY, USA (2007)

[111] Verma, K., Sheth, A.: Autonomic web processes. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) Service-Oriented Computing - ICSOC
2005, Lecture Notes in Computer Science, vol. 3826, pp. 1–11.
Springer Berlin / Heidelberg (2005), 10.1007/11596141 1

[112] Weiser, M.: The computer for the Twenty-First century. Scientific
American 265(3), 94–104 (1991)

[113] Weiser, M.: Some computer science issues in ubiquitous computing.
SIGMOBILE Mob. Comput. Commun. Rev. 3(3) (Jul 1999)

[114] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B.,
Perry, J., Herzog, S., Huynh, A.N., Carlson: Terminology for policy-
based management (2000)

[115] Weyns, D.: An architecture-centric approach for software engineering
with situated multiagent systems. Ph.D. thesis, Katholieke Universiteit
Leuven (2006)

[116] Wojek, C., Nickel, K., Stiefelhagen, R.: Activity recognition and Room-
Level tracking in an office environment. In: Multisensor Fusion and In-
tegration for Intelligent Systems, 2006 IEEE International Conference
on. p. 25–30 (2006)

[117] Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley
& Sons (Jun 2002)

[118] Xu, H., Shatz, S.M.: A framework for Model-Based design of Agent-
Oriented software. IEEE Trans. Softw. Eng. 29, 15–30 (Jan 2003)

[119] Yang, J., Wang, J., Chen, Y.: Using acceleration measurements for
activity recognition: An effective learning algorithm for constructing
neural classifiers. Pattern Recognition Letters 29(16), 2213–2220 (Dec
2008)

[120] Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in
pervasive computing: A review. Pervasive and Mobile Computing In
Press, Corrected Proof (2011)

[121] Yu, Z., Xiao-xing, M., Jian-nong, C., Ping, Y., Jian, L.: Software Agent-
Virtualized application mobility in pervasive environments (2008)

[122] Zhang, D., Gu, T., Wang, X.: Enabling context-aware smart home with
semantic web technologies. International Journal of Humanfriendly
Welfare Robotic Systems 6(4), 12–20 (2005)

ha
l-0

06
89

77
3,

 v
er

si
on

 1
 - 

20
 A

pr
 2

01
2


