
User Interface Plasticity:
Model Driven Engineering to the Limit!

Joëlle Coutaz
Grenoble Informatics Laboratory (LIG)

Grenoble University
BP 53, 38041 Grenoble Cedex 9

+33 4 76 51 48 54
joelle.coutaz@imag.fr

ABSTRACT
Ten years ago, I introduced the notion of user interface
plasticity to denote the capacity of user interfaces to adapt,
or to be adapted, to the context of use while preserving
usability. The Model Driven Engineering (MDE) approach,
which was used for user interface generation since the early
eighties in HCI, has recently been revived to address this
complex problem. Although MDE has resulted in
interesting and convincing results for conventional WIMP
user interfaces, it has not fully demonstrated its theoretical
promises yet. In this paper, we discuss how to push MDE to
the limit in order to reconcile high-level modeling
techniques with low-level programming in order to go
beyond WIMP user interfaces.

Author Keywords
User interface plasticity, user interface adaptation, user
interface generation, run time adaptation, user interface
composition, dynamic service composition, model driven
engineering (MDE), service-oriented architecture (SOA).

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and
Techniques – User interfaces.

General Terms
Design, Human Factors.

INTRODUCTION
Ten years ago, I introduced the notion of “user interface
plasticity” to denote the capacity of user interfaces to adapt,
or to be adapted, to the context of use while preserving
usability [35]. My proposal was motivated by the
emergence of ubiquitous computing with the need for
accommodating a large degree of variability in terms of
heterogeneity, dynamicity, and scalability. Although these

challenges have permeated the whole ICT community, they
have not been addressed in a holistic, systemic manner.

Typically, virtualization, as developed for cloud computing,
does not cover that of interaction resources. SLA (Service
Level Agreement) developed for dynamic service
composition, does not cover any of the HCI-centered
concerns. Research in autonomic systems conveniently
keeps humans out of the loop. Service composition as
supported by mash-up tools, boils down to the assembly of
ready-for-use services whose UI’s, which are tightly
coupled with business code, cannot be “plastified”.
Unfortunately, during this period, the HCI community has
not been any better, developing a variety of disjoint tools
and concepts.

HCI researchers have addressed user interface plasticity
from different starting points, depending on their “credo”:
at the toolkit level by those who advocate “hard core
development” and fine grained control of user interfaces
[15, 16], at the infrastructure level with the development of
dedicated middleware by those who strive for generic
computational substrates [1, 25, 29, 34, 36], to task level
modeling by those who believe in the top-down
development of user interfaces [4, 26, 32]. Principles and
concepts from Model Driven Engineering have however
brought some hope into a unifying and systemic approach
to the problem of UI plasticity. But is MDE good enough
and/or used appropriately?

In this article, we will analyze the contribution of Model-
Driven Engineering to HCI as well as its limitations in the
light of UI plasticity. From our early experience with MDE
and UI plasticity, we will show how to exploit models at
run time to obtain maximum flexibility and quality. We will
conclude with recommendations for a research agenda.

CONTRIBUTIONS OF MDE TO HCI
The primary contributions of MDE to HCI are two simple
notions – that of model and meta-model, which, combined
with transformations and mappings, constitute a powerful
framework for knowledge sharing and technical integration.

A model is a representation of a thing, with a specific
purpose. It is “able to answer specific questions in place of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

1

the actual thing under study” [5]. A meta-model sets the
rules for producing models. A transformation is the
production of a set of target models from a set of source
models, according to a transformation definition. In turn, a
transformation definition is a set of transformation rules
that together describe how source models are transformed
into target models [21]. A transformation expresses an
overall dependency between source and target models.
However, experience shows that a finer grain of
correspondence needs to be expressed. Typically, the
incremental modification of one source element should be
propagated easily into the corresponding target element(s)
and vice versa. The need for traceability between source
and target models is expressed as mappings between source
and target elements of these models1.

The HCI community has a long experience with models and
meta-models, long before MDE existed as a field. In the
1980’s, grammars (meta-models) were the formal basis for
generating textual and graphical user interfaces [19]. Until
recently, transformation rules were implemented as code
within UI generators offering very little to no control over
the resulting user interface. In addition, mappings were
limited to the expression of correspondence (bindings)
between elements of the user interface with the API of the
functional core (i.e. the business code).

MDE has helped the HCI community to promote
transformation rules as models. “Transformations as
models” has three notable advantages – which, so far, has
not been fully exploited by the HCI community:

1. It opens the way to knowledge capitalization and reuse:
frequent transformations can serve as patterns in
libraries, which in turn, provide handles for intra- and
inter- UI consistency.

2. Comparative evaluations of UI’s can be performed in a
controlled way, and UI’s can be (re)targeted for
different contexts of use using different
transformations.

3. Most notably, transformations can be transformed,
offering a powerful formal recursive mechanism for
supporting UI plasticity.

To our best knowledge, no research has been conducted on
transforming transformations for UI plasticity. On the other
hand, patterns are emerging [35] and early work has been
initiated on UI’s generated with different sets of
transformation rules to support different usability criteria
[18, 33].

1 In mathematics, a mapping is “a rule of correspondence
established between two sets that associates each member
of the first set with a single member of the second” [The
American Heritage Dictionary of the English Language,
1970, p. 797]

Considering the big picture, MDE has provided the HCI
community with a vocabulary and a framework to express
its own conceptual generic framework for the development
of plastic user interfaces: the CAMELEON reference
framework [9]. As shown in Figure 1, the CAMELEON
reference framework makes explicit a set of models (e.g.,
task model, Abstract UI, Concrete UI, Final UI) that serves
as a common vocabulary within the HCI community to
discuss and express different perspectives on a user interface.
Again, the notion of transformation borrowed from MDE, is
used to combine these models into distinct development
processes. For example, conventional UI generation
operates by the way of top-down vertical transformations.
Typically, an abstract UI (AUI) is derived from the domain-
dependent concepts and task models. In turn, the AUI is
transformed into a concrete UI (CUI), followed by the final
executable UI (FUI). At the opposite, a reverse engineering
process infers abstract models from more concrete ones
using vertical bottom-up transformations. Translations are
horizontal transformations that maintain the same level of
abstraction between the source and target models.

Figure 1. The CAMELEON reference framework for the
development of plastic user interfaces (adapted from [9]).

Unlike the process initiated in the 1980’s, which contained
one entry point only at a high level of abstraction, the
CAMELEON framework authorizes entry points at any
level of abstraction from which any combination of
horizontal and vertical bottom-up and top-down
transformations can be applied. This theoretical flexibility
means that the stakeholders involved in the development of
an interactive system can use the development process that
best suits their practice or the case at handIn short, the
CAMELEON reference framework is an MDE-compliant
conceptual generic structuring tool for the development of
plastic UI’s:

• As a structuring reference framework, it federates the
HCI community around a consensus.

• As a conceptual generic tool, it sets a vast agenda for
technical research.

• As an MDE-compliant framework, it is still unclear in
practice that modeling is the only way to go in HCI. This
issue is discussed next.

2

MDE AND HCI IN PRACTICE
The CAMELEON reference framework brings together the
“right models” but the HCI community is far from having
the “models right”. The profusion of initiatives and User
Interface Description Languages (UIDL) is symptomatic of
the need – and difficulty, to define a coherent set of non-
ambiguous and easy to understand meta-models capable of
covering the problem space of plastic UI’s. The UsiXML2
consortium is putting significant effort in this direction, but
has not reached its objectives yet. In my opinion, two meta-
models (at least) deserve particular attention:
transformations and Concrete UI’s.

As stated above, transformations offer an elegant
mechanism for full flexibility and technical integration.
However, transformations are hard to express (QVT and
ATL are not languages for naïve developers). In addition,
usability rules are even harder to convey formally [33].
More importantly, inverse transformations cannot be
automatically derived for any source transformations. This
is a fundamental flaw that may result in inconsistent models
as transformations are performed up and down iteratively
during the life cycle of a system, breaking down the
flexibility of the solution space envisioned by the
CAMELEON reference framework.

At the CUI level, meta-modeling, not only lags behind
innovation, but bridles creativity. UIDL’s for the
expression of concrete user interfaces are technology-driven
instead of leaving rooms for new forms of interaction
techniques. Although the CARE properties [12] have been
devised 15 years ago, CUI languages have hardly scratched
the surface of multimodal interaction. We are still unable to
generate the paradigmatic “put-that-there” multimodal user
interface introduced more than 25 years ago [6]. We do
however generate simplistic multimodal UI’s based on
XHTML+VoiceXML but with very limited micro-
dialogues for interaction repair [4]. Actually, CUI-level
UIDL’s are still struggling with the description of
conventional GUI’s for desktop computing. Meanwhile:

• New forms of “constructable” computers such as the
MIT shiftables3 and the CMU toy blocks4 are put on the
market;

• Novel interaction techniques are proliferating whether it
be for supporting mobility (e.g., SixSense [22]), for 3D
interaction (where gesture and 3D screens are becoming
predominant), or even for graphical tabletops and multi-
surface interaction [3];

2 http://www.usixml.org
3 http://sifteo.com/
4 http://www.modrobotics.com/

• New requirements are emerging: design is switching
from the development of useful and usable systems for
people with precise goals, to engaging and inspired
interaction spaces whose users can easily switch from a
consumer mind to the creator mode.

In short, CUI meta-models need to capture the unbound
vibrant convergence of physicality with “digitality”.
Perhaps, meta-modeling is, by essence, the wrong approach
to CUI’s: a model, which represents a thing, is necessarily a
simplification, therefore a reduction, of the real thing. In
these conditions, the subtle aspects of interaction, which
make all the differences between constrained and inspired
design, are better expressed using code directly in place of
an abstraction of this code. However this assertion should
be mitigated by the following findings: designers excel at
sketching pictures to specify concrete rendering. On the
other hand, they find it difficult to express the dynamics,
forcing them to use natural language [24]. One way to fill
the gap between designers’practice and productive models
is to revive work à-la-Peridot [23] such as SketchiXML
[14] where drawings are retro-engineered into machine-
computable rendering. As for inferring behavior from
examples, the promising “Watch What I Do” paradigm
initiated in the late 1970’s (cf. Dave Smith’s PYGMALION
system [31]) is still an opened question.

Model Driven Engineering, as a software development
methodology, has favored the dichotomy between the design
stages and the run time phase, resulting in three major
drawbacks:

• Over time, models may get out of sync with the running
code.

• Design tools are intended for software professionals, not
for “the people”. As a result, end-users are doomed to
consume what software designers have decided to be
good for their hypothetic target users.

• Run time adaptation is limited to the changes of context
identified as key by the developers. Again, the envelope
for end-users’ activities is constrained by design.

Applied to UI development, the dichotomy between design
and run time phases means that UI generation from a task
model cannot cope with ambient computing where task
arrangement may be highly opportunistic and
unpredictable. On the other hand, because the task model is
not available at run time, the links between the FUI and its
original task model are lost. It is then difficult, not to say
impossible, to articulate run-time adaptation based on
semantically rich design-time descriptions. As a result, a
FUI cannot be remolded beyond its cosmetic surface as
supported by the CSS.
Blurring the distinction between the design stage and the
run time phase is a promising approach. This idea is
emerging in main stream middleware [17] as well as in
HCI. The middleware community, however, does not
necessarily address end-user concerns. Typically, a

3

“sloppy” dynamic reconfiguration at the middleware level
is good enough if it preserves system autonomy. It is not
“observable” to the end-user whereas UI re-molding and UI
redistribution are! Thus, UI plasticity puts additional
constraints. In particular, it becomes necessary to make
explicit the transition between the source and the target
UI’s so that, in Norman’s terms, end-users can evaluate the
new state. We need to pay attention to transition UI’s in
generic terms, not on a case per case basis.

In the following section, I illustrate the combination of
models and code at run time with the work we have done
for addressing the problem of plastic UI’s at run time.

MODELS AT RUN TIME
Early experience in the development of plastic UI’s can be
summarized as “one does not fit all”. The following three
principles show why.

Principle #1: Close-adaptiveness must cooperate with
open-adaptiveness [27]. As discussed above, by design, an
interactive system has an “innate domain of plasticity”: it is
close-adaptive for the set of contexts of use for which this
system/component can adapt on its own. For unplanned
contexts of use, the system is forced to go beyond its
domain of plasticity. It must be open-adaptive so that a tier
infrastructure (a middleware) can take over the adaptation
process.

Figure 2. A typical functional decomposition for Ambient
interactive spaces [2].

As shown in Figure 2, the functional decomposition of the
middleware that supports open adaptation includes:
• A context infrastructure that builds and maintains a

model of the context of use [30].
• A situation synthesizer that computes the situation and

possibly informs an evolution engine of the occurrence of
a new situation.

• An evolution engine that elaborates a reaction in response
to the new situation.

• An Adaptation producer that implements the adaptation
plan produced by the evolution engine.

Such a decomposition is commonly used for the
development of autonomic systems. To adapt this
decomposition for plastic UI’s, we propose the following
improvements:

• The end-user is kept in the loop: the reaction to a new
situation may be a mix of specifications provided by
developers or learnt by the evolution engine. In addition,
it may call upon end-users’ advice by the way of a meta-
UI [13]. I see this meta-UI as an end-user development
environment.

• The components referred to in the action plan do not
necessarily exist as executable code. This is where
Principle #2 comes into play.

Figure 3. An interactive system as a graph of models available
at run time. These models are related by mappings and

transformations.

Principle #2: At run time, an interactive system is a set of
graphs of models that express different aspects of the
system at multiple levels of abstraction. As advocated by
the CAMELEON framework, these models are related by
mappings and transformations. As a result, an interactive
system is not limited to a set of linked pieces of code.
Models developed at design-time, which convey high-level
design decision, are still available at runtime for performing
rational adaptation beyond cosmetic changes. When a
component retrieved by the component manager is a high-
level description such as a task model, the configurator
relies on reificators to produce executable code as in
Digymes [11] and iCrafter [29]. A retrieved component
may be executable, but may not fit the requirements.
Ideally, it can be reversed-engineered through abstractors,
then transformed by translators and reified again into
executable code [7].

Principle #3: By analogy with the slinky meta-model of
Arch, the software developer can play with principles #1
and #2. At one extreme, the interactive system may exist as

4

one single task model linked to one single AUI graph,
linked to a single CUI graph, etc. (see Figure 3). This
application of Principle #1 does not indeed leave much
flexibility to cope with unpredictable situations unless it
relies completely on the tier middleware infrastructure that
can modify any of these models on the fly, then triggers the
appropriate transformations to update the Final UI.

Alternatively, the various perspectives of the system (task
models, AUI, FUI, context model, etc.) as well as the
adaptation mechanisms of the tier infrastructure are
distributed across distinct UI service-oriented components,
each one covering a small task grain that can be run in
different contexts of use. We have adopted this approach to
implement the Comet toolkit [16].

Figure 4. The Photo-browser application [1]: a dynamic
composition of executable and transformable components,

managed by a dynamic set of interconnected factories running
on different platforms (Windows, MacOS X, and Android).

Basically, a Comet is a plastic micro-interactive system
whose architecture pushes forward the separation of
concerns advocated by PAC and MVC. The functional
coverage of a comet is left open (from a plastic widget such
as a control panel, to a complete system such as a
powerpoint-like slide viewer). Each Comet embeds its own

task model, its own adaptation algorithm, as well as
multiple CUI’s and FUI’s, each one adapted to a particular
context of use. FUI’s are hand-coded possibly using
different toolkits to satisfy our requirements for fine-
grained personalization and heterogeneity. From the
infrastructure point of view, a Comet is a service that can be
discovered, deployed and integrated dynamically into the
configuration that constitutes an interactive environment.
The COTS [8], whose executable UI code is meta-described
with the task they support, are based on similar ideas.

Figures 4 and 5 show another application of principles #1
and #2 for the implementation of Photo-browser. The FUI
of Photo-browser is dynamically composed of:

• a Tcl-Tk component running on a multi-point interactive
surface (Fig. 4-d),

• a Java component that shows a list of the image names
(Fig. 4-b),

• and an HTML-based browser to navigate through the
images set (Fig. 4-c).

Figure 5. (Left) Connecting a Gphone to the interactive space
by laying it down on the interactive table. (Right) Using the

Gphone as a remote-controller to browse photos displayed by
the HTML UI component of fig. 3c and video-projected on the

wall. (In the current implementation, the contact of the
Gphone with the Diamond Touch is simulated as a new

situation event for interpretation by Ethylene).

Photo-browser is implemented on top of a tier middleware
infrastructure (called Ethylene) that covers the evolution
engine, the component manager as well as the adaptation
producer of Figure 2 [1]. Ethylene is a distributed system
composed of Ethylene factories each one running on
possibly different processors (IP devices). The role of an
Ethylene factory is to manage the life cycle of a set of
components that reside on the same IP device as this factory
and that have been registered to this factory. When residing
on storage space, a component is meta-described using
EthylenXML, an extension of WSDL. This meta-
description includes the human task that the component
supports, the resources it requires, and whether it is
executable code or transformable code. In the latter case, it
may be a task model, an AUI, a CUI, or even a graph of
these models. For example, the HTML-based component
(Fig 4.c) is a CUI expressed in a variation of HTML. It
must be transformed on the fly to be interpreted by an
HTML renderer. The Tcl-Tk multi-point UI and the Java
list are executable code. Their EthyleneXML meta-
description specifies that they support image browsing and

5

image selection tasks, that they need such and such
interaction resources (e.g., a Tcl-Tk interpreter and a
Diamond Touch) for proper execution, and that they require
such and such communication protocol to be interconnected
with other components. The GPhone UI component of
Figure 5 is an executable Gphone app that supports the
next-previous browsing tasks. Interconnection between
components is initiated by the factories.

As these examples show, the engineering community of
HCI has focused its attention on run time adaptation of the
UI portion of an interactive system, not on the dynamic
adaptation of the interactive system as a whole. The
software engineering community is developing several
approaches to enable dynamic bindings for service-oriented
architectures. For example, Canfora et al. propose the
dynamic composition of web services based on
BPEL4People (that expresses a task-like model) as well as
an extension of WSDL to meta-describe the services and
using these two descriptions to generate the corresponding
user interface [10]. Although bindings can be performed at
run time, users are confined within the workflow designed
by the software developers. In addition, the generated UI’s
are limited to conventional GUI.

One promising approach to support flexibility at run time, is
to consider the functional core components as well as UI
components as services. In Ethylene, UI components adhere
to this philosophy. They can be implemented in very
different technologies, they can be discovered and recruited
on the fly based on their meta-description, they can be
transformed on the fly. On the other hand, the business
logic side of interactive systems is left opened. CRUISe
[28] aims at supporting both sides in a uniform way, but
applies to the dynamic composition of web services and UI
composition for the web [38].

CONCLUSION
Model-Driven Engineering has provided the HCI
community with useful concepts for framing its own
research agenda. Additional research is required for the
definition of meta-models, transformations and mappings
provided that high-level descriptions can take full
advantage of the latest innovations at the FUI level. Models
at design time should not disappear at run time, but should
be available to go beyond cosmetic adaptation. Design
phase and run-time phase equal “même combat!”

Maximum flexibility and quality should be attainable by
modeling the business logic as well as the user interface as
services with their own domain of plasticity. UI
components should not be pure executable code. They have
to be meta-described to express their exact nature and
contracts with a human-centered perspective. They can be
retrieved, transformed, and recomposed on the fly thanks to
a tier middleware infrastructure. This middleware, which
supports context, dynamic discovery as well as the dynamic
(re)composition of business logic and of transformable UI

components, will permit interactive systems to go beyond
their domain of plasticity. However, we must be careful at
keeping the user in the loop while being able to produce
transition user interfaces automatically.

The risk is that this wonderful apparatus will be designed
for the specialists. We need to put the power in the people’s
hands and explore the potential from social programming.
The success of the Apple App Store is a good indication for
this. Mash-up tools have also started this trend for
composing web-based applications (e.g., Google Gadgets
or Yahoo! Widgets). More collaboration should be
developed with the “cloud computing crowd”. After all, an
interactive space is a mini-cloud. If interaction resources
were virtualized as memory, network and computing
resources are currently envisioned by the “systemers”, then
this would simplify enormously the development of user
interfaces. IAM [19] was an early attempt in this direction.

In short, MDE is an important tool for adaptation as long as
it does not block creativity.

ACKNOWLEDGMENTS
I thank the ANR CONTINUUM project (ANR-08-VERS-
005) as well as the ITEA 08026 UsiXML project for
supporting this work. Special thanks to Alexandre Demeure
for the implementation of the Comets, and to Lionel Balme
for the implementation of Ethylene.

REFERENCES
1. Balme, L. Interfaces homme-machine plastiques : une

approche par composants dynamiques. Thèse de
doctorat Informatique préparée au Laboratoire
d’Informatique de Grenoble (LIG), Université Joseph
Fourier, 20 juin 2008, 240 pages

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J.,
Calvary, G. CAMELEON-RT: a Software Architecture
Reference Model for Distributed, Migratable, and
Plastic User Interfaces, second European Symposium on
Ambient Intelligence, EUSAI 04, EUSAI 2004, LNCS
3295, Markopoulos et al. Eds, 291-302

3. Balakrishnan, R., Baudisch, P. Special Issue on
Ubiquitous Multi-Display Environments, Human-
Computer Interaction, 2009, Vol. 24, Taylor and Francis
publ.

4. Berti, S. & Paternò F. (2005). Migratory multimodal
interfaces in multidevice environments. In Proc.
International Conference on Multimodal Interfaces
(ICMI 05), ACM Publ., 92-99

5. Bézivin, J., Dupé, G., Jouault, F., Pitette, G. & Rougui,
J. First Experiments with the ATL Transformation
Language: Transforming XSLT into Xquery. OOPSLA
Workshop, Anaheim California USA (2003)

6. Bolt, R. “Put That There”: Voice and gesture at the
graphics interface. In Proc. of the 7th International Conf.

6

on Computer Graphics and Interactive techniques, ACM
Publ. (1980), 262-270

7. Bouillon, L., Vanderdonckt, J., Souchon, N.,
"Recovering Alternatives Presentation Models of a Web
Page with Vaquita", In: Proceedings of 4th International
Conference on Computer-Aided Design of User
Interfaces, CADUI 2002, Kluwer Academics Pub., p.
311-322, Valenciennes, France, May 2002

8. Bourguin, G., Lewandowski , A., Tarby, J.-C. Defining
Task Oriented Component. In Proc. TAMODIA 2007,
Lecture Notes in Computer Science 4849 Springer 2007,
ISBN 978-3-540-77221-7, (2007) 170-183

9. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Souchon, N., Bouillon, L., Vanderdonckt, J.: Plasticity
of User Interfaces: A Revised Reference Framework.
1rst International Workshop on Task Models and
Diagrams for User Interface Design TAMODIA'2002,
(2002) 127-134

10.Canfora, G., Di Penta, M., Lombardi, P., Villani, M.L.
Dynamic Composition of Web Applications in Human
centered Processes. IEEE PESOS’09, May 18-19,
(2009)

11.Coninx, K., Luyten, K., Vandervelpen, C., Van den
Bergh, J. & Creemers, B. (2003). Dygimes:
Dynamically Generating Interfaces for Mobile
Computing Devices and Embedded Systems. In Proc.
Mobile HCI, 256-270.

12.Coutaz, J., Nigay, L., Salbert, D., Blandford, A., May,
J., "Four easy pieces for assessing the usability of
multimodal interaction: the CARE properties", In:
Proceedings of the IFIP Interantional Conference on
Human-Computer Interaction, INTERACT 1995, p.
115-120, Lillehammer, Norway, (1995)

13.Coutaz, J. Meta User Interfaces for Ambient Spaces. In
Proc. TAMODIA 2006, 5th International Workshop on
Task Models and Diagrams for User Interface Design
TAMODIA'2006, (2006), Springer Verlag publ.

14.Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q.,
Vanderdonckt, J., "SketchiXML: towards a multi-agent
design tool for sketching user interfaces based on
USIXML", In: Proceedings of the 3rd Annual
Conference on Task Models and Diagrams, TAMODIA
2004, Prague, Czech Republic, (2004)

15.Crease, M., Brewster, S.A., Gray, P., "Caring, Sharing
Widgets: a toolkit of sensitive widgets", In: Proceedings
of the 14th Annual Conference of the British HCI
Group, BCS-HCI 2000, Springer, pp 257-270,
Sunderland, UK, September 2000ß Past, Present, and
Future of User Interface Software Tools. Transactions
on Computer-Human Interaction (TOCHI), ACM Publ.,
Vol 7(1), (2000) 3-28

16.Demeure, A., Calvary, G., Koninx, K. COMET(s), a
Software Architecture Style and an Interactors Toolkit

for Plastic user Interfaces. In Proc. 15th International
Workshop, DSV-IS 2008, T.C.N. Graham & P.
Palanque (Eds), Lecture Notes in Computer Science
5136, Springer Berlin / Heidelberg, Kingston, Canada,
(2008), 225-237

17.Ferry, N. Hourdin, G., Lavirotte, S., Rey, G., Tigli, J.-
Y., Riveill, M. Models at Runtime: Service for Device
Composition and Adaptation. In 4th International
Workshop Models@run.time, Models 2009 (MRT'09),
(2009)

18.Gajos, K., Wobbrock, J., and Weld, D. Improving the
performance of motor-impaired users with
automatically-generated, ability-based interfaces. In CHI
'08: Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems,
pages 1257-1266, New York, NY, USA, ACM (2008)

19.Hayes, P.J., Szekely, P. & Lerner, R.A. Design
alternatives for user interface management systems
based on experience with COUSIN. In Proc. Of the
ACM Conf. on Human Factors in Computing Systems
(CHI’85, San Francisco, CA, Apr. 14-18), (1985) 169-
175

20.Lachenal, C., Rey, G., Barralon, N. MUSICAE, an
infrastructure for MUlti-Surface Interaction in Context
Aware Environment. In Proc. HCI International, Crete,
(2003), 125-126

21.Mens, T., Czarnecki, K. & Van Gorp, P. A taxonomy or
Model Transformations. Dagstuhl Seminar Proc04101.
(2005) http://drops.dagstuhl.de/opus/volltexte/2005/11

22.Mistry, P., Maes, P. SixthSense – A Wearable Gestural
Interface. In Proc. SIGGRAPH Asia 2009, Emerging
Technologies, Yokohama, Japan (2009)

23.Myers, B. Creating User Interfaces using programming
by example, visual programming, and constraints. ACM
Transaction on Programming Languages and Systems
(TOPLAS), Vol. 12 (2) (1990), ACM Publ., 143-177

24.Myers, B., Park, S.Y., Nakano, Y., Mueller, G., Ko, A.
How designers Design and Program Interactive
Behaviors. In Proc. IEEE Symposium on Visual
Languages and Human Centric Computing (VL/HCC)
(2008) 177-184

25.Newman, M. W., Sedivy, J. Z., Neuwirth, C. M.,
Edwards, W. K., Hong, J. I., Izadi, S., Marcelo, K.,
Smith, T. F., "Designing for Serendipity: Supporting
End-User Configuration of Ubiquitous Computing
Environments", In: Proceedings of Designing Interactive
Systems, DIS 2002, p. 147-156, London, UK, (2002).

26.Nichols, J., Rothrock, B., Chau, D. H., Myers, B. A.,
"Huddle: Automatically Generating Interfaces for
Systems of Multiple Connected Appliances," In:
Proceedings of the 19th Annual ACM Symposium on
User interface Software and Technology, UIST 2006, p.
279-288, Montreux, Switzerland, (2006).

7

27.Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D., Wolf, A.: An Architecture-Based Approach to Self-
Adaptive Software", IEEE Intelligent Systems,
May/June (1999) 54-62

28.Pietschmann, S., Voigt, M., MeiBner, K. Dynamic
Composition of Service-Oriented Web User Interfaces.
Proc. of the 4th International Conf. on Internet and Web
Applications and Services, ICIW 2009, IEEE CPS,
ISBN 9780769536132, (2009)

29.Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P. &
Winograd, T. Icrafter: a Service Framework for
Ubiquitous Computing Environments. In Proc. Ubicomp
2001, G. Abowd, B. Brumitt, S. Shafer Eds., Springer
Publ., LNCS 2201, (2001) 57-75

30.Reignier, P. Brdiczka, O., Vaufreydaz, D., Crowley,
J.L., Maisonnasse, J. Contexte-Aware Environments:
from Specification to Implementation. Expert Systems:
The Journal of Knowledge Engineering (2007)

31.Smith, D. C. Pygmalion: An executable Electronic
Blackboard. Chapter1 In “Watch What I Do”, A. Cypher
ed., The MIT Press (1993)

32.Sottet, J.-S., Calvary, G., Favre, J.-M.: Towards Model
Driven Engineering of Plastic User Interfaces.
International workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI), MoDELS 05
(2005)

33.Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M. A
Model-Driven Engineering Approach for the Usability
of User Interfaces. In Proc. Engineering Interactive
Systems (EIS2007), J. Gulliksen et al. (eds), LNCS
4940, (2007), 140-157

34.Sousa, J.P., Garlan, D., "The Aura Software
Architecture: an Infrastructure for Ubiquitous
Computing", In: Carnegie Mellon Technical Report,
CMU-CS-03-183, (2003)

35.Taleb, M., Seffah, A., Abran, A. Interactive Systems
Engineering: A Pattern-Oriented and Model-Driven
Architecture. In Software Engineering Research and
Practice (2009), 636-642.

36.Tandler, P., "Software Infrastructure for Ubiquitous
Computing Environments: Supporting Synchronous
Collaboration with Heterogeneous Devices", In:
Proceedings of UBICOMP 2001, LNCS 2201, p. 96-
115, Atlanta, GA, USA, (2001).

37.Thevenin, D., Coutaz, J.: Plasticity of User Interfaces:
Framework and Research Agenda. In Proc. Interact99,
Edinburgh, A. Sasse & C. Johnson Eds, IFIP IOS Press,
(1999) 110-1172002.

38.Yu, J. Benatallah, B., Saint-Paul, R., Casati, F., Daniel,
F. M., Matera. A Framework for rapid Integration of
Presentation Components. In WWW’07 Proc. of the
16th International Conf. on World Wide Web (2007)
923-932

8

