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 Introduction 

• How to maintain consistency in spite of 

concurrent accesses by multiple services and 

multiple applications to a common Entity of 

Interest ? 

• How to deal with dynamic context changes ? 

•  Solution: apply general techniques used to 
develop critical software 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to middleware for IoT 

1. Introduction in middleware design of 
synchronous components to allow validation 

2.  Synchronous/asynchronous issue 

 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to component based adaptive 
middleware 

1. Introduction in middleware design of 
synchronous components to allow validation 

2. Synchronous/asynchronous issue 

 



Critical Software 

A critical software is a software whose failing 

has serious consequences: 

• Nuclear technology 

• Transportation 

•Automotive 

•Train 

•Aircraft construction 

 … 

 



Critical Software 

•  In addition, other consequences are relevant 
to determine the critical aspect of software: 

• Financial aspect 

• Loosing equipment, bug correction 

• Equipment callback (automotive) 

• Bad advertising 



Example: Ariane5 launcher 

• 9 Jul 1996 Ariane5 launcher explodes 
• Same software as Ariane4  
• Causes: 

• Variable  to carry horizontal acceleration encoded 
with 8 bits (ok for Ariane4, not sufficient for 
Ariane5) 

• Result: variable overflow 
• The rocket had an incorrect trajectory and 

engineers blow it up 
• Cost:  > 1 million euros (2 satellites lost) 



Software Classification 

A Catastrophic (human life loss) 

B Dangerous (serious injuries, loss 
of goods) 

C Major (failure or loss of the 
system) 

D Minor (without consequence on 
the system) 

E Without effect 

Example of the aeronautics norm 
DO178B: 
 

Depending of  the level of risk 
of the system, different kinds 
of verification are required 



Software Classification 

Minor acceptable situation 

Major 

Dangerous Unacceptable situation 

catastrophic 10-3 / hour 10-6 / 
hour 

10-9/hour 10-12
/hour 

probabilities probable rare very rare very 
improbable 



How Develop critical software ? 

Classical Development  U Cycle  

investigation 
Qualification 
    in laboratory 
    in operation 

specification 

design 

development tests 

integration 

validation 

tests white box 

tests  black box 

tests of integrated system 
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How Develop Critical Software ?  

• Cost of critical software development: 
• Specification : 10% 

• Design: 10% 

• Development: 25% 

• Integration tests: 5% 

• Validation: 50% 

• Fact: 

– Earlier an error is detected,  less expensive its 
correction is. 
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Cost of Error Correction  
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error detection time 

cost of 
error 

correction 

Put the effort  on the upstream phase 

development based on models 



How Develop Critical Software ?  

• Goals of critical software specification: 

– Define application needs 

•  specific domain engineers 

– Allowing application development 

• Coherency 

• Completeness 

– Allowing application functional validation 

• Express properties to be validated 

 
 Formal model usage 
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Critical Software Specification  

• First Goal: must yield a formal description 

of the application needs: 

– Standard to allowing communication between 

computer science engineers and non computer 

science ones 

– General enough to allow different  kinds of 

application: 

• Synchronous (and/or) 

• Asynchronous (and/or) 

• Algorithmic 
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Critical Software Specification  

• Second Goal: allowing errors detection 

carried out upstream: 

– Validation of the specification: 

• Coherency 

• Completeness 

• Proofs  

– Test 

• Quick prototype development 

• Specification simulation 

 
11/01/2016 18 



Critical Software Specification  
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helium 
tank low 

hydrogen 
tank low 

action action 

Simultaneous 
events ? 

unspecified action 



Critical Software Specification  

• Third goal: make easier the  transition from  

specification to design (refinement) 

– Reuse of specification simulation tests 

– Formalization of design 

– Code generation 

• Sequential/distributed 

• Toward a target language 

• Embedded/qualified code 
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How Develop Critical Software 

test reuse 
test coverage 

test generation 
MODEL 

proofs 

code 

automatic code 
generation 

functional 
validation 

abstract 
interpretation 

simulation 

no more 
integration tests 



Critical Software Validation 

• What is a correct software? 

– No execution errors, time constraints 
respected, compliance of results. 

• Solutions: 

– At model level : 
• Simulation 

• Formal proofs 

– At implementation level: 
• Test 

• Abstract interpretation 



Validation Methods 

• Testing 

– Run the program on set of inputs and check the 
results 

• Static Analysis 

– Examine the source code to increase confidence 
that it works as intended  

• Formal Verification 

– Argue formally that the application always works as 
intended 

 



Testing 

• Dynamic verification process applied at 

implementation level. 

• Feed the system (or one if its components) 

with a set of input data values: 

– Input data set not too large to avoid huge time 

testing procedure. 

– Maximal coverage of different cases required. 
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Program Testing 

Concrete semantics 

Test coverage 
errors 

all program executions 

executions tested ok 

undetected 
failure 

“Testing only highlights 
bugs but not ensure their 
absence “ (E. Dijkstra) 
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Static Analysis 

• The aim of static analysis is to search for 

errors without running the program. 

•  Abstract interpretation = replace data of 

the program by an abstraction in order to 

be able to compute program properties. 

• Abstraction must ensure : 

• A(P) “correct”  P correct 

• But A(P) “incorrect”   ? 
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Static Analysis: example 

abstraction: integer by intervals 

1: x:= 1; 

2: while (x < 1000) { 

3:   x := x+1; 

4: } 

x1 = [1,1] 

x2 = x1 U x3 ∩ [-∞, 999] 

x3 = x2  [1,1] 

x4 = x1 U x3  ∩ [1000, ∞] 

Abstract interpretation theory  values 

are fix point equation solutions. 
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Formal Verification 

• What about functional validation ? 

– Does the program compute the expected outputs? 

– Respect of time constraints (temporal properties)  

– Intuitive partition of temporal properties: 

• Safety properties: something bad never happens 

• Liveness properties: something good eventually 
happens 



Safety and Liveness 
Properties 

• Example: train timetable  

– Count the difference between marks and seconds 

– Decide when the train is ontime, late, early 

– ontime : difference = 0 

– late : difference > 3 and it was ontime before or 
difference > 1 and it was already late before 

– early : difference < -3 and it was   ontime before or 
difference < -1 and it was early  before 

 



Safety and Liveness 
Properties 

• Some properties: 

1. It is impossible to be late and early; 

2.  It is impossible to directly pass from late to early; 

3. It is impossible to remain late only one instant; 

4. If the train stops, it will eventually get late 

• Properties 1, 2, 3 : safety 

• Property 4 : liveness 



Safety and Liveness Properties 

Some properties: 

1. It is impossible to be late and early; 

2.  It is impossible to directly pass from late to early; 

3. It is impossible to remain late only one instant; 

4. If the train stops, it will eventually get late 

Properties 1, 2, 3 : safety 

Property 4 : liveness (refer to unbound future) 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to middleware for IoT 

1. Introduction in middleware design of 
synchronous components to allow validation 

2.  Synchronous/asynchronous issue 

 



Safety and Liveness Properties 
Checking 

• Use of model checking technique 

• Model checking goal: prove safety and 
liveness properties of a system in analyzing 
a model of the system. 

• Model checking techniques require: 

–  model of the system  

–  express properties 

–  algorithm to check properties againts the 
model ( decidability) 

 



Model Checking Techniques 

• Model = automata which is the set of  program 
behaviors 

• Properties expression = temporal logic: 

–  LTL : liveness properties  

–  CTL: safety properties 

• Algorithm = 

–  LTL : algorithm  exponential wrt the formula size 
and linear wrt automata size. 

– CTL: algorithm linear wrt formula size  and wrt 
automata size 

 



Model Checking Model  

• Model = finite state machine (automata)  which is the 
set of  program behaviors 

• Kripke structure:   
• non deterministic automata 

• Oriented graph 

• Nodes are program states 

• To each state , a set of  atomic (basic) properties is 
associated 
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Model Checking Model  

• Model = finite state machine (automata)  which is the 
set of  program behaviors 

• Kripke structure over AP (set of atomic propositions) 
• A finite set of states (S) 

• A set of initial states I ⊆  S 
• A transition relation  R  ⊆ S x S  | ∀s ∊ S,  ∃ s’  ∊ S  and (s,s’)  

∊ R 
• A labeling function L: S → AP 

• How specify such a model ? 
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Model Specification  

• Model = Mealy automata which is the set of  
program behaviors (deterministic) 

• A Mealy automata is composed of: 
1. A finite set of states (Q) 

2. A finite alphabet of triggers (T) 

3. A finite alphabet of actions (A) 

4. An initial state  (qinit   € Q) 

5. A transition function  δ: Q x T → Q 
6. An output function  λ : Q x T → 2 A 

 

37 

Notation:  a transition is denoted  q1        q2 
t/a 



Model Specification  

• Model = Mealy automata which is the set of  
program behaviors 

 Example: Traffic Light 

trigger: tick, reset 

action:green,orange,red 



Model Specification  

Mealy automata = Kripke structure 

 
• AP = T ∪ A 
• S ⊆  Q x 2AP ; {(q, v) |∃ q         q’ and  v = {t} ∪a or v = ⌀ } 
•  I = {qinit } x 2AP  ⋂ S 
• R = {(q,v), (q’,v’) | ∃ q          q’ and v = {t} ∪a and (q’,v’) ∊ S 
• L(q,v) = v 
 
 

t/a 

t/a  



Model Specification  

Mealy automata = Kripke structure 

 



Implicit vs Explicit Mealy 

Machine 

• Mealy automata is an explicit Mealy Machine 

• Implicit representation as Boolean equation 

system with registers. 

• M = <Q, qinit, T, A, δ, λ>    ξ (M) = < T ∪ A, R, D>: 

– R: Boolean registers 

– D : definitions or equations of the form x=e  

• X ∊ A ∪ R+  and e Boolean expr built from T ∪ R 

• States are encoded as register combination: {q1,q2,q3} is 

encoded with 2 registers r1, r2 and a possible encoding is : 00, 

01,10 

• For each state, δ and λ encoded with  truth tables  

11/01/2016 41 



Implicit vs Explicit  Mealy 
Machine 

 

 

Registers: X0, X1 
Initial values:  X0 = 0 and X1 = 0 
 
X0next = not X0 and not X1; 
X1next = X0; 
 
orange = not X0 and not X1 and tick; 
green = not X0 and X1 and tick; 
red = X0 and not X1 and tick; 
 
  

00 10 

01 



Model Checking  

How design  Mealy automata ? 

 

Use synchronous languages to specify critical 

systems. 

 

Synchronous programs = Mealy automata 

 

 



 
Model Specification with Synchronous  

Languages 

1. Synchronous languages  have a simple formal 
model (a finite state machine) making formal 
reasoning tractable. 

2. Synchronous languages support concurrency 
and offer an implicit or explicit means to express 
parallelism. 

3. Synchronous languages are devoted to design 
reactive systems. 



Determinism & Reactivity 

• Synchronous languages are deterministic and reactive 

• Determinism: 
• The same input sequence always yields the same output 

sequence 

• Reactivity: 
• The program must react(*) to any stimulus 

• Implies absence of deadlock  
• (*) Does not necessary generate outputs, the reaction may change  internal state only. 

 
 



Synchronous Reactive Programs (1)  

Environment

Read 
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Synchronous Reactive Programs (1)  

Environment

Computations 
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Synchronous Reactive Programs (1)  

Environment

Write 

Atomic execution: read, compute, write 
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Synchronous Modelling 
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 Atomic execution of the reaction 

 Logical time 

 Well founded  

 Liable to formal analysis  

 

 

 

Time 

Atomic Reaction 
 

I1 I2 

O1 
O2 



Synchronous Hypothesis  

• Synchronous languages work on a logical time. 

• The time is  

– Discrete 

– Total ordering of instants. 

• A reaction executes in one instant. 

• Actions that compose the reaction may be 
partially ordered. 

Use N as time base 



Synchronous Hypothesis  

• Communications between actors are also 
supposed to be instantaneous. 

• All parts of a synchronous model receive 
exactly the same information (instantaneous 
broadcast). 

• Outcome: Outputs are simultaneous with 
Inputs (they are said to be synchronous)  

• Thanks to these strong hypotheses, program 
execution is fully deterministic. 



Reactive ? 

• Different ways to “react” to the environment: 

– Event driven system: 

• Receive events 

• Answer by sending events 

– Data flow system: 

• Receive data continuously 

• Answer by treating data continuously also 

Some systems 
have components of 
both kinds 



Event Driven Reactive 
System 

landing 

open gear door 

gear door opened gear down 

push down gear block gear 

Langing gear management 



Data Flow Reactive System 
(Example) 

sensors 

navigation 

guidance 

piloting 

operators 

P
e
ri
o
d
ic

 p
ro

ce
ss

u
s 

• get measures 

• where am I ? 

• where go I ? 

• command computation 

• command to operators 

Control/Command  vehicle 



Imperative and 

Declarative languages 

• Different ways to express synchronous 

programs: 

1. Imperative languages rely on implicitly or 

explicitly finite state machines, well suited 

to design event driven reactive system 

2. Declarative languages rely on operator 

networks computing data flows, well suited 

to design data flow reactive system 
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Imperative Language 

Event  driven applications can be designed with an 
imperative language (as Esterel) 

1. Listen input and output events 
2. Specific operators to deal with the logical time 

(await) 
3. Test of presence or absence of signals (present) 
4. Synchronous parallelism (||) 
5. Emit to change the environment (emit S) 
6. Usual operators (loop, abort when) 

 



Esterel program example 

module RUNNER: 
Constant  NumberOfLaps : integer; 
input Morning, Second, Meter, Step, Lap; 
output Walk, Jump, Run; 
 
        Program body   (next slide) 
 
end module 



Esterel program example 

sequence 

every Morning do 
   repeat NumberOfLaps times 
     abort 
         abort  sustain Walk when 100 Meter; 
         abort 
              every Step do emit Jump end every 
         when 15 Second; 
         sustain Run 
    when Lap 
  end repeat 
end every 



Esterel program = Mealy Machine 

module ABRO: 
   input A, B, R; 
   output O; 
   loop 
     [ await A || await B ]; 
     emit O; 
   each R 
end module 



Data flow = Operator Networks 

Data flow  programs can be interpreted as 
networks of operators. 

Data « flow » to operators where they are 
consumed. Then, the operators generate new data. 
(Data Flow description). 

op1 

op2 

op3 

Operator 

Token 

(data) 



Flows, Clocks 

• A flow is a pair made of 

– A possibly infinite sequence of values of a 
given type 

– A clock representing a sequence of instants 

X:T      (x1, x2, … , xn,  … ) 



An example of Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow Synchronous Languages 

operator  Average (X,Y:int) returns (M:int) 
M = (X + Y)/2 

    X = (X1,X2,….,Xn,…….) 

     Y = (Y1,Y2,…..,Yn,……..) 
     M = ((X1+Y1)/2, (X2+Y2)/2,……,(Xn+Yn)/2,….) 

Average 

X:int 

Y:int 

M:int 



Data Flow Synchronous Languages 

Memorizing  to take the past into account: 
1. pre (previous): 

        X = (x1,x2,….,xn,……) :  
pre(X) = (nil, x1,x2,….,xn,……)  
nil undefined value denoting uninitialized 
memory 

2. → (initialize):  
X = (x1,x2,….,xn,……), Y = (y1,y2,….,yn,……) :  
X → Y = (x1,y2,….,yn,……)  



Sequential examples 

n= 0 → pre(n) + 1 
 

operator MinMax (x:int) returns (min,max:int): 
min = x→ if (x < pre(min) then x else pre(min) 
max = x → if (x > pre(max) then x else pre(max) 
 

x= (3, 4, 5, 2, 7, ….) 
min = (3, 3, 3, 2, 2,…) 
max = (3, 4, 5, 5, 7,…) 
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Sequential examples 

operator CT (init:int) returns (c:int): 
 c = init → pre(c) + 2 
 
 
operator  DoubleCall (even:bool) returns (n:int) 

n= if (even) then CT(0) else CT(1) 
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ? 
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Sequential examples 

operator CT (init:int) returns (c:int): 
 c = init → pre(c) + 2 

CT(0) = (0,2,4,6,8,10,12,14,16,18,….) 
CT(1) = (1,3,5,7,9,11,13,15,17,19,….) 

operator  DoubleCall (even:bool) returns (n:int) 
n= if (even) then CT(0) else CT(1) 

DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ? 
                (1,3,4,6,9,11,12,14,17) 
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Modulo Counter 

operator MCounter (incr:bool; modulo : int)  
                             returns (cpt:int); 
   var count : int; 
   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 



Modulo Counter Clock 

operator MCounterClock (incr:bool;  
                                     modulo : int)  
                          returns(cpt:int; 
                                     modulo_clock: bool); 
   var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 

modulo_clock = count != cpt; 



Modulo Counter Clock 

var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
     modulo_clock = count != cpt; 

 

MCounterClock(true,3): 
count:                   0 1 2 3 1 2 3…… 
cpt =                      0 1 2 0 1 2 0…….. 
modulo_clock =  ff ff ff tt ff ff tt …. 



Timer 

operator Timer returns (hour, minute, second:int); 
var hour_clock, minute_clock, day_clock : bool; 
 
(second, minute_clock) = MCounterClock(true, 60); 
(minute, hour_clock) = MCounterClock(minute_clock,60); 
(hour, dummy_clock) = MCounterClock(hour_clock, 24); 
 



Data Flow Programs Compilation 

 Data flow programs are compiled into automata 



Data Flow Program Compilation 

operator WD (set, reset, deadline:bool) 
                         returns (alarm:bool); 
var is_set:bool;  
  alarm = is_set and deadline; 
  is_set = false -> if set then true  
                               else if reset then false  
                                       else pre(is_set); 
  assert not(set and reset); 
tel. 



Data Flow Program Compilation 

First, the program is translated into pseudo code: 
if _init then // first instant (or reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 
 



Data Flow Program Compilation 

3 states: 
S0: _init = true and pre(is_set) = nil 
S1: _init = false and pre(is_set) = false 
S2: _init = false  and pre(is_set) = true 

For WD, we consider  2 state variables: 
_init (true, false, false, ….) and pre(is_set) 

Choose state variables : _init and variables which 
have pre. 
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Data Flow Program Compilation 

S1: 

 

 

       _init := false  

       pre(is_set) := false 

 

 

 

S0: alarm := false;       

initial 
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if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2:  
 
 
       _init = false; 
       pre(is_set) := true; 
 
 
 
 

S0: alarm := false;       

initial 

¬set 

set 
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if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2:  
 
 
       _init = false; 
       pre(is_set) := true; 
 
 
 
 

S0: alarm := false;       

initial 

¬set 

set 
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Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2: if set then  
         alarm := deadline;  
         go to S2; 
      else 
        if reset then 
            alarm := false; 
            go to S1; 
        else 
            alarm := deadline; 
        go to S2; 

S0: alarm := false;       

initial 

¬set ¬reset 

reset 

set 
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if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2: if set then  
         alarm := deadline;  
         go to S2; 
      else 
        if reset then 
            alarm := false; 
            go to S1; 
        else 
            alarm := deadline; 
        go to S2; 

S0: alarm := false;       

initial 

¬set ¬reset 

reset 

set 
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Model Checking Technique 

• Model = automata which is the set of  program 
behaviors 

• Properties expression = temporal logic: 
–  LTL : liveness properties  

–  CTL: safety properties 

• Algorithm = 
–  LTL : algorithm  exponential wrt the formula size and 

linear wrt automata size. 

– CTL: algorithm linear wrt formula size  and wrt 
automata size 
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Properties Checking 

• Liveness Property  : 

–    automata  B() 

–  L(B()) =   decidable 

–   |= M  : L(M  B(~)) =  

 
 



Safety Properties 

• CTL formula characterization: 

– Atomic formulas 

– Usual logic operators: not, and, or ()  

– Specific temporal operators: 

• EX , EF , EG  

• AX , AF , AG  

• EU(1 ,2), AU(1 ,2) 



Safety Properties Verification  

We call Sat() the set of states where  is true. 

 M |=     iff sinit  Sat(). 

Algorithm: 

Sat()  = { s |  |= s} 

 Sat(not ) = S\Sat() 

 Sat(1 or 2) = Sat(1) U Sat(2) 

 Sat (EX ) =  {s |  t  Sat() , s → t}   (Pre Sat()) 

 Sat (EG ) = gfp ((x) =  Sat()  Pre(x)) 

 Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1)  Pre(x)) 

 



Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 

c 
b,c 

EG (a or b)  gfp ((x) =  Sat(a or b)  Pre(x)) 

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4}) 

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4} 

({s0, s1, s2, s3,s4}) = {s0, s1, s2, s4} 
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Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 
c b,c 

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} 

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4}) 

({s0, s1, s2,  s4}) = {s0, s1, s2, s4} 

S0 |= EG( a or b) 
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• Problem: the size of automata 

• Solution: symbolic model checking 

• Usage of BDD (Binary Decision Diagram) 

to encode both automata and formula. 

• Each Boolean function  has a unique 

representation 

• Shannon decomposition: 
• f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn) 

Model Checking 

Implementation 
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Model Checking 

Implementation 

• When applying  recursively Shannon 

decomposition on all variables, we obtain 

a tree where leaves are either 1 or 0. 

• BDD  are: 

– A concise representation of the Shannon tree 

–  no useless node (if x then g else g  g) 

– Share common sub graphs 
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Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 

x0 

x1 

y0 

y1 y1 

y0 

y1 y1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 

1 
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Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 
x0 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 

0 

1 

1 
x1 

y0 

y1 y1 

y0 

y1 y1 

x1 

y0 

y1 y1 

y0 

y1 y1 
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Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 
x0 0 1 

x1 

y0 

y1 y1 

0 1 0 1 

x1 

y0 

y1 y1 

0 

0 1 1 1 

0 
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Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 
x0 0 1 

x1 

y1 

0 1 

x1 

y0 

y1 y1 

0 1 1 1 

0 0 
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Model Checking 

Implementation (2) 

x0 0 1 
x1 

y1 

0 1 

x1 

y0 

y1 

1 1 

0 
0 

(x1  y1) v (x0  y0  x1) 
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Model Checking 

Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

1 

0 
0 

(x1  y1) v (x0  y0  x1) 
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Model Checking 

Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

(x1  y1) v (x0  y0  x1) 
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Model Checking 

Implementation(3) 

• Implicit representation of the of states set 

and of the transition relation of automata 

with BDD. 

•  BDD allows 
• canonical representation 

• test of emptiness immediate (bdd =0) 

• complementarity immediate (1 = 0) 

• union and intersection  not immediate 

• Pre immediate 
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 Model Checking 

Implementation (4) 

• But BDD efficiency depends on the 

number of variables 

• Other method: SAT-Solver 

– Sat-solvers answer the question: given a 

propositional formula, is there exist a 

valuation of the formula variables such that 

this formula holds 

–  first algorithm (DPLL) exponential (1960)  
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 Model Checking 

Implementation (4) 

• SAT-Solver algorithm: 

– formula  CNF formula  set of clauses 

– heuristics to choose variables 

– deduction engine: 

• propagation  

• specific reduction rule application (unit clause) 

• Others reduction rules 

–  conflict analysis + learning 
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Model Checking  

Implementation (5) 

• SAT-Solver usage: 

–  encoding of the paths  of length k by 

propositional formulas 

–  the existence of a path of length k (for a given 

k) where a temporal property  is true can be 

reduce to the satisfaction of a propositional 

formula  

–  theorem: given  a temporal property and M 

a model, then M |=    n  such that           

M |= n   ( n < |S| . 2 ||) 
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Bounded Model Checking 

• SAT-Solver are used in complement of 

implicit (BDD based) methods. 

• M |=  

– verify ¬  on all paths of length k (k bounded) 

–  useful to quickly extract counter examples  
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Bounded Model Checking 

Given a property p 
Is there a state reachable in k steps, which 
satisfies ¬p ? 

p p p p ¬p 

s0 s1 s2 Sk-1 sk 

…….. 
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Bounded Model Checking 

The reachable states in k steps are captured by: 
             I(s0)       T(s0,s1)        ………..       T(sk-1, sk) 
The property p fails in one of the k steps 

V V V 

¬p(s0) V ¬p(s1) V ¬p(s2) …… V ¬p(sk-1) V ¬p(sk) 

The safety property p is valid up to step k iff Ω(k) is 
unsatisfiable: 

Ω(k) = I(s0)     (        T(si, si+1) )     (       ¬p(si))  

v V 

i=0 

k-1 

v 

V     
i=0 

k 
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Bounded Model Checking 

K=0 

BMC(M,ρ,k) 

k≥ CT 

SAT 

UnSAT K++ 

M |= ρ 

M |=ρ 

CT is the completeness threshold 
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Bounded Model Checking 

• Computing CT is as hard as model checking. 

• Idea: Compute an over-approximation to the 

actual CT 

– Consider the system as a graph. 

– Compute CT from structure of  the graph. 

•  Example: for AGρ properties, CT is the 

longest shortest path between any two 

reachable states, starting from initial state 
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Model Checking with 
Observers 

• Express safety properties as observers. 

• An observer is a program which observes the 
program and outputs ok when the property 
holds and failure when its fails 

program 

observer 

inputs outputs 

ok 
failure 



Model Checking with 
observers (2) 

P: aircraft autopilot and security system 

P aircraft_altitude landing_order 

 aircraft_altitude 

200 

landing_order not 

alarm 

alarm 

and 

implies 
 



Properties Validation 

• Taking into account the environment 

– without any assumption on the environment, 
proving properties is difficult 

–  but the environment is indeterminist 

• Human presence no predictable 

• Fault occurrence 

• … 

– Solution: use assertion to make hypothesis on the 
environment and make it determinist 



Properties Validation (2) 

• Express safety properties as observers. 

• Express constraints about the environment as 
assertions. 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 



Properties Validation (3) 

• if assume remains true, then ok  also 
remains true  (or failure false). 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to middleware for IoT (~Wcomp) 

1. Introduction in middleware design of 
synchronous components to allow validation 

2. Synchronous /asynchronous issues 



Practical Issues 

Application to  Middleware for IoT  



Practical Issues 
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•How to maintain consistency in spite of concurrent 

accesses by multiple services and multiple 

applications to a common Entity of Interest ? 

• How to deal with dynamic context changes ? 

•Introduce in Middleware specific components 

(synchronous components) on which model 

checking technique applies 

 

Our challenges are: 



Application to Middleware 

Devices and  
applications 

MODELS 

proofs 

WComp 
Bean 

automatic code 
generation 

functional 
validation 

simulation 



Synchronous Models 

To sum up : 
1. Synchronous models can be designed 

as event-driven controllers or as data 
flow operator networks 

2. They always represent automata 
3. Model-checking techniques apply 
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Application to Adaptive Middleware 

• Our goal is to ensure safety for applications 
using and managing services. 
• Devices will have a synchronous component   to 
allow model-checking techniques application as 
validation 
• Synchronous component to express constraints 
between concurrent services 
• Synchronous parallelism as composition 
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Use Case 
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       Entity of interest: temperature controlled room 



Use Case 

 

• Use case: manage room temperature 

1. Temperature controlled by 2 internet objects: air 

condionner and heater 

2. Two applications use these devices: 

1. APP1: to cool the room 

2. APP2: to warm the room 

3. Constraints: 

 APP1 is launch by Paul smartphone 

 APP2  is launch by Pierre smartphone 

 The air conditioner and the heater cannot be switch on 

simultaneously 

 

 

 

 

 

• Goal: send the appropriate alarm (strong, 

weak or warning) 
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simultaneous 



Use Case Implementation 
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Use Case Implementation 
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Se
rvice

 co
n

strain
ts 

Application constraints 



Use Case Implementation 
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How specify  the Heater synchronous model ? 
 
How specify both device and application constraints as 
synchronous models ? 
 
Solution: use a synchronous language 



First Solution: SCADE 

• Scade (Safety-Critical Application 

Development Environment) has been 

developed to address  safety-critical 

embedded application design 

• The Scade suite KCG code generator has 

been qualified  as a development tool 

according to DO-178B norm at level A. 
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SCADE 

• Scade has been used to  develop, validate 

and generate code for: 

–  avionics: 

• Airbus A 341: flight controls 

• Airbus A 380: Flight controls, cockpit display, fuel 

control, braking, etc,.. 

• Eurocopter EC-225 : Automatic pilot 

• Dassault Aviation F7X: Flight Controls, landing 

gear, braking 

• Boeing 787: Landing gear, nose wheel steering, 

braking 
11/01/2016 127 



• System Design 

–  Both data flows and state machines 

• Simulation 

– Graphical simulation, automatic GUI 

integration 

• Verification 

– Apply observer  technique 

• Code Generation 

–  certified  C code 

 

SCADE 
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Modulo Counter 

operator MCounter (incr:bool; modulo : int)  
                             returns (cpt:int); 
   var count : int; 
   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 



Modulo Counter 

count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 

   



Modulo Counter Clock 

operator MCounterClock (incr:bool;  
                                     modulo : int)  
                          returns(cpt:int; 
                                     modulo_clock: bool); 
   var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 

modulo_clock = count <> cpt; 



Modulo Counter Clock 



Timer 

operator Timer returns (hour, minute, second:int); 
var hour_clock, minute_clock, day_clock : bool; 
 
   (second, minute_clock) = MCounterClock(true, 60); 
   (minute, hour_clock) = 
                             MCounterClock(minute_clock,60); 
   (hour, dummy_clock) = 
                             MCounterClock(hour_clock, 24); 
 



Timer 



SCADE: state machines 

• Input and output: same interface  

• States: 

–  Possible hierarchy 

–  Start in the initial state 

–  Content = application behavior 

• Transitions: 

–  From a state to another one 

–  Triggered by a Boolean condition 
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SCADE: state machines 

state 

transition 

trigger 

When ON, ison = true 

When off, ison = false 
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SCADE: model checking 

Observer technique 

posture model 

posture model 
specification in scade 
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SCADE: model checking 

Observer technique 

posture 
observer 

posture verification 

valid 

assume (lying # sitting # standing)  
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SCADE: code generation 

• KCG generates certifiable code (DO-178 

compliance) 

• Clean code, rigid structure (possible  

integration) 

• Interfacing potential with user-defined 

code (c/c++) 
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CLEM versus SCADE  

• SCADE  suite: 

– Complex design environment 

–  C code not embedded into C# bean easily 

–  closed compilation environment 

• Solution: use  CLEM toolkit to specify and 

verify synchronous monitor before 

integration: 

–  own compilation means 

–  C#  code generation 
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CLEM  ISSUE 
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CLEM is a toolkit around the 
LE synchronous language 
offering: 

• Modular compilation 
• Simulation 
• Verification  
• Code generation for 

hardware and 
software targets (C#) 



LE Language 

• LE synchronous language 

– Textual imperative language (~ Esterel) 

• Usual synchronous languages operators: 

– || ; abort ; strong abort; sequence (>>); present; loop; emit  

–  wait pause 

• run to call external  module 

– Explicit Mealy machine (automata designed with 

Galaxy) 

– Implicit Mealy machine (~data flow) 
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LE Language 

module Parallel: 

Input:I; 

Output: O1, O2,O3; 

  emit O1 

|| 

  wait I >> emit O2 

|| 

   emit O3 

end 
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LE Language 

module Parallel: 

Input:I; 

Output: O1, O2,O3; 
Mealy Machine 

Register: 

X0: 0: X0next; 

X1: 0 : X1next; 

X0next = X0 and not X1; 

X1next = X0 and X1 or not X1 and I 

                or not X0 and X1; 

O1 = not X0 and not X1; 

O2 = X0 and not X1 and I; 

O3 = not X0 and  not X1; 
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LE Compilation 

• Compilation into implicit Mealy machines (Boolean 

equation systems with registers) 

• Compilation ⇒  sort equation systems 

• Challenge: modular compilation ? 

–  ⇒ face causality problem  

–  causality = no evaluation cycle in equation systems 

– total order prevents modularity 

– issue: compute partial orders 
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LE Compilation 
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O2= I2 
O1 = I1 

O3 = I3 
L1 = I 
O = L2 
L2 = L1 

L1 = I 
O = L2 
L2 = L1 



LE Compilation 

• Sorting algorithms: 

1. Apply CPM on dependency graphs of equation 

systems to compute ranges of evaluation levels for 

variables (efficient) 

2.  apply fix point theory: 

• Compute variable evaluation levels as fix point of a monotonic 

increasing function 

• Uniqueness of fixpoints  we can consider a global sorting as 

well as a local and separate sorting 
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CLEM Simulation and 

Verification 

• Simulation: 

– Based on either blif_simul an interpretor for blif code 

generated by CLEM or cles a lec code interpretor 

• Verification: 

1. NuSMV model checker (code generated) 

2. blif_check for small application 
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Synchronous Component 
Design with CLEM 

Synchronous modeling 
 
 
 

Explicit Mealy machine 
designed with Galaxy 

or 
Implicit Mealy machine 

designed as Boolean 
equations in Clem 

O1 = i1 
and i2…… 

Automata 

Bool. equations 

Constraints 



Solution:Constraint 

Component  
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APP 

Constraint Component 

Room 
Temperature  

(Entity Of 
Interest) 

APP 

|| 
Constraint 

Controlller 



Solution: Constraint 

Component  
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New constraint 
controller 

APP  

Air 

Conditioner APP  

Heater 

|| 
Constraint 

Controlller 

New Constraint Component 

Old Constraint Component 

|| fan 

|| 

Inhibitor (OFF) 

Room 
Temperature  

(Entity Of 
Interest) 

Dynamicity: Appearance of a new device 



Solution: Constraint 

Component  
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Room 
Temperature  

(Entity Of 
Interest) 

APP  

Air 

Conditione

r 
APP  

Heater 

fan 

APP  

New constraint 
controller 

|| 

Constraint 

Controlller 

New Constraint Component 

Old Constraint Component 

|| 

Scheduler 

Dynamicity: Appearance of a new Application 



Solution: Constraint 

Component  
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New constraint 
controller 

APP  

Air 

Conditioner APP  

Heater 

|| 
Constraint 

Controlller 

New Constraint Component 

Old Constraint Component 

|| fan 

|| 

Inhibitor (On) 

Room 
Temperature  

(Entity Of 
Interest) 

Dynamicity: Disappearance of a  device 

X 



Solution: Constraint  

Component  
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New constraint 
controller 

APP  

Air 

Conditioner 
APP 

1 

Heater 

|| 
Constraint 

Controlller 

New Constraint Component 

Old Constraint Component 

|| fan 

|| 

Inhibitor (On) 

Room 
Temperature  

(Entity Of 
Interest) 

Dynamicity: Disappearance of an application 

X 

Application 

manager 



Constraint Controller 

Design 
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Air 

Conditioner 

Constraint Component 

DCL 
= 

Description 
Constraint 
Language  

 
 

Heater 

|| Constraint 

Controlller 

 
TypeDevice: 
AirConditioner : n, Heater : m; 
 
Constraints: 
AirConditioner:is_on = Or i in [0..n-1] 
device[i].is_on and Forall j in [n..n+m-1] 
(device[j].is_off) ; 
 
AirConditioner:is_off = And i in [0..n] 
device[i].is_off ; 
 
Heater:is_on = Or i in [n..n+m-1] 
device[i].is_on and Forall j in [0..n-
1](device[j].is_off) ; 
 
Heater:is_off = And i in [n..n+m-1] 
device[i].is_off ; 
 

Automatic generation of the constraint controller ? 



Description Constraint 

Language 
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Need of only application and device types 

Generic constraints description to manage 

multiple accesses 

Generation of CLEM implicit Mealy machines 

describing  constraint controller behaviors 

Dealing with dynamic environments changes : 

appearance and disappearance of 

applications/devices. 



 Validation with CLEM 

validated 

component 

C 

C 

C 

Generate 

C# Bean 

LE 

design 
simulation Validatation  



Application to WComp 
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||| Constraint 

Controlller 

|| 

|| 

automatic generation 

C# beans 

validation 



Use Case Issue in CLEM 
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air_cond_swith_on = switch_on ;  air_condi_switch off = switch_off 

air_cond_is_on =  is_on  ;air_cond_is_off = is_off 

heater_swith_on = switch_on ;  air_heater_switch off = switch_off 

heater_is_on =  is_on  ; heater_is_off = is_off 

G
alaxy 

G
alaxy 

air_cond 

heater 



Use Case in CLEM  
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APP 

Constraint Component 

Room 
Temperature  

(Entity Of 
Interest) 

APP 

|| 
Constraint 

Controlller 

air_cond_switch_on, air_cond_switch_off 

heater_switch_on, heater_switch_off 

air_cond_inhib 

heater_inhib 

air_cond_is_on, air_cond_is_off 

heater_is_on, heater_is_off 

is_on 

is_off 



Use Case in CLEM 
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Constraint 

Controlller 

Mealy 
machine 

air_cond_is_on, air_cond_is_off 

heater_is_on, heater_is_off 

air_cond_inhib, heater_inhib 

is_on 

is_off 

module ConstraintController : 
 Input: air_cond_is_on, air_cond_is_off, 
              heater_is_on, heater_is_off, 
              air_cond_inhib, heater_inhib; 
 Output: is_on, is_off; 
 local ac_is_on, ac_is_off, h_is_on, h_is_off 
{ 
   Mealy machine: 
     ac_is_on = air_cond_is_on and not  air_cond_inhib; 
     ac_is_off = air_cond_is_off anf not  air_cond_inhib; 
     h_is_off = heater_is_off and not heater_inhib; 
     h_is_off = heater_is_off and not heater_inhib; 
 
     is_on = (ac_is_on and not h_is_on) or 
                   (h_is_on and not ac_is_on);                      
     is_off = h_is_off and ac_is_off; 
} 
end 



Use Case in CLEM 
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module ConstraintComponent: 
 Input: air_cond_switch_on, air_cond_switch_off, air_cond_inhib, heater_switch_on,  
             heater_switch_off, heater_inhib; 
 Output: is_on, is_off;  
 local air_cond_is_on, air_cond_is_off, heater_is_on, heater_is_off 
{ 
    run AC_H_model[air_cond_switch_on\ switch_on, air_cond_switch_off\switch_off, 
                                     air_cond_is_on\is_on, air_cond_is_off\is_off] 
|| 
   run AC_H_model[heater_switch_on\switch_on, heater_switch_off\switch_off, 
                                    heater_is_on\is_on, heater_is_off\is_off] 
|| 
   run ConstraintController 
} 
end 



C# Bean Generation 
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LE 

Constraint 

Component 

Validation (CLEM blif_check): 
air_cond_switch_on  and heater_switch_off  =>  

is_on 

air_cond_inhib and heater_inhib =>  not  is_on     

C# Bean Generation 

run automaton 

reset automaton 



C# Bean Integration 

• C# Bean implements synchronous component in 

Wcomp 

• Communication is asynchronous in WComp 

•   ⇒ 

– need of  a synchronizer to collect asynchronous events 

and build the logical event for the synchronous monitor 

–  need for the reverse operation to  plunge the outputs of  

the instant into asynchronous events 
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C# Bean Generation 
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S
y
n

c
h

ro
n
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a
ti

o
n

 

U
n

-s
y
n

c
h
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n
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a
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n
 

Synchronous  
monitor 

asynchronous data synchronous data 

C# 

Bean 

Controlled 

room 



Asynchrony/Synchrony 

• Synchronization goal:  

1. generate the set of  synchronous input events that 

characterizes the synchronous logical instant. 

2. Define an exchange format to allow communication 

between synchronous monitors and asynchronous 

components 

• Un-synchronization goal: 

1. Generate the set of  asynchronous output events from 

synchronous output events computed by the 

synchronous component. 
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Asynchrony/Synchrony 

• How define the logical instant ?  

– The synchronization phase should be generic and allow 

to take into account several types of devices. 

– Introduction of a generic structure to represent events 

coming from different sensors: 

• name, presence, value type, value, elapsed time 

• apply  several sampling policies : elapsed time, occurrence,  

average 
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Asynchrony/Synchrony 

• How define the logical instant ?  
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evt evt 
Sampling 
policies 

  

Synchronous instant 



Asynchrony/Synchrony 

• Exchange format to get a means to establish 

communication between input methods and output 

events in Wcomp. 

• ⇒ Serialization/Deserialization of events. Two 

serialization proposals: 

1. “ [<name> = <occurrence>,[<type>, <valeur>]?;]+” 

• a = false; b = true; v = true, int, 7;”  

2. [“<name>”<occurrence> <type> <valeur>”]+ 

• “a false” “b true” “v true int 7” 
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Asynchrony/Synchrony 
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Event buffer 
(sampling policies) 

serialization 

Events 

“event string” 

Un-serialization 

Run automaton 
Reset automaton 

Outputs 

serialization 

Synchronous component 

Input generator 



Asynchrony/Synchrony 
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Un-serialization 

Run automaton 
Reset automaton 

Outputs 

serialization 

Synchronous component 

Un-serialization 

(string ⇾ events) 

Sending Policies 

Ouputs generator 

Asynchronous events 


