

Safety in Middleware for IoT

Annie Ressouche Inria-sam (stars) annie.ressouche@inria.fr

http://www-sop.inria.fr/members/Annie.Ressouche/teaching.html

Introduction

- How to maintain consistency in spite of concurrent accesses by multiple services and multiple applications to a common Entity of Interest?
- How to deal with dynamic context changes?
- Solution: apply general techniques used to develop critical software

Outline

- 1. Critical system validation
- 2. Model-checking solution
 - 1. Model specification
 - 2. Model-checking techniques
- 3. Application to middleware for IoT
 - Introduction in middleware design of synchronous components to allow validation
 - 2. Synchronous/asynchronous issue

Outline

- 1. Critical system validation
- 2. Model-checking solution
 - 1. Model specification
 - 2. Model-checking techniques
- 3. Application to component based adaptive middleware
 - 1. Introduction in middleware design of synchronous components to allow validation
 - 2. Synchronous/asynchronous issue

Critical Software

Ultra-tiny computer are embedded into a

A critical software is a software whose failing has serious consequences:

- Nuclear technology
- Transportation
 - Automotive
 - Train
 - Aircraft construction

Critical Software

- In addition, other consequences are relevant to determine the critical aspect of software:
 - Financial aspect
 - Loosing equipment, bug correction
 - Equipment callback (automotive)
 - Bad advertising

Example: Ariane5 launcher,

- 9 Jul 1996 Ariane5 launcher explodes
- Same software as Ariane4
- Causes:
 - Variable to carry horizontal acceleration encoded with 8 bits (ok for Ariane4, not sufficient for Ariane5)
 - Result: variable overflow
 - The rocket had an incorrect trajectory and engineers blow it up
- Cost: > 1 million euros (2 satellites lost)

Software Classification

Depending of the level of risk of the system, different kinds of verification are required Example of the aeronautics norm DO178B:

- A Catastrophic (human life loss)
- **B** Dangerous (serious injuries, loss of goods)
- C Major (failure or loss of the system)
- Minor (without consequence on the system)
- **E** Without effect

Software Classification

Ultra-tiny	compute	r are emb	edded	into o

				-	
Minor			acceptable	situation	
Major					
Dangerous	Unacceptable situation				
catastrophic	10 ⁻³ / hour	10 ⁻⁶ / hour	10 ⁻⁹ /hour	10 ⁻¹² /hour	
probabilities	probable	rare	very rare	very improbable	

How Develop critical software?

Ultra-tiny computer are embedded into o

Classical Development U Cycle

How Develop Critical Software?

Cost of critical software development:

Specification: 10%

Design: 10%

Development: 25%

Integration tests: 5%

Validation: 50%

• Fact:

 Earlier an error is detected, less expensive its correction is.

Cost of Error Correction

Put the effort on the upstream phase

development based on models

How Develop Critical Software?

- Goals of critical software specification:
 - Define application needs
 - ⇒ specific domain engineers
 - Allowing application development
 - Coherency
 - Completeness
 - Allowing application functional validation
 - Express properties to be validated

⇒ Formal model usage

- First Goal: must yield a formal description of the application needs:
 - Standard to allowing communication between computer science engineers and non computer science ones
 - General enough to allow different kinds of application:
 - Synchronous (and/or)
 - Asynchronous (and/or)
 - Algorithmic

- Second Goal: allowing errors detection carried out upstream:
 - Validation of the specification:
 - Coherency
 - Completeness
 - Proofs
 - Test
 - Quick prototype development
 - Specification simulation

Ultra-tiny computer are embedded into o

Simultaneous events?

unspecified action

action

- Third goal: make easier the transition from specification to design (refinement)
 - Reuse of specification simulation tests
 - Formalization of design
 - Code generation
 - Sequential/distributed
 - Toward a target language
 - Embedded/qualified code

How Develop Critical Software

Critical Software Validation

- What is a correct software?
 - No execution errors, time constraints respected, compliance of results.
- Solutions:
 - At model level :
 - Simulation
 - Formal proofs
 - At implementation level:
 - Test
 - Abstract interpretation

Validation Methods

Ultra-tiny computer are embedded into

Testing

Run the program on set of inputs and check the results

Static Analysis

 Examine the source code to increase confidence that it works as intended

Formal Verification

Argue formally that the application always works as intended

Testing

- Dynamic verification process applied at implementation level.
- Feed the system (or one if its components) with a set of input data values:
 - Input data set not too large to avoid huge time testing procedure.
 - Maximal coverage of different cases required.

Program Testing

Ultra-tiny computer are embedded into

bugs but not ensure their absence " (E. Dijkstra)

Static Analysis

Ultra-tiny computer are embedded into

- The aim of static analysis is to search for errors without running the program.
- Abstract interpretation = replace data of the program by an abstraction in order to be able to compute program properties.
- Abstraction must ensure :
 - A(P) "correct" \Rightarrow P correct
 - But $\mathbb{A}(P)$ "incorrect" \Rightarrow ?

11/01/2016 26

Static Analysis: example

27

abstraction: integer by intervals

```
1: x:= 1;
2: while (x < 1000) {
3: x := x+1;
4: }
```

```
x1 = [1,1]

x2 = x1 \ U \ x3 \ \cap [-\infty, 999]

x3 = x2 \oplus [1,1]

x4 = x1 \ U \ x3 \ \cap [1000, \infty]
```

Abstract interpretation theory ⇒ values are fix point equation solutions.

Formal Verification

- What about functional validation?
 - Does the program compute the expected outputs?
 - Respect of time constraints (temporal properties)
 - Intuitive partition of temporal properties:
 - Safety properties: something bad never happens
 - Liveness properties: something good eventually happens

Safety and Liveness Properties

- Example: train timetable
 - Count the difference between marks and seconds
 - Decide when the train is ontime, late, early
 - ontime : difference = 0
 - late: difference > 3 and it was ontime before or difference > 1 and it was already late before
 - early: difference < -3 and it was ontime before or difference < -1 and it was early before

Safety and Liveness Properties

- Some properties:
 - 1. It is impossible to be late and early;
 - 2. It is impossible to directly pass from late to early;
 - 3. It is impossible to remain late only one instant;
 - 4. If the train stops, it will eventually get late
- Properties 1, 2, 3 : safety
- Property 4 : liveness

Safety and Liveness Properties

Ultra-tiny computer are embedded into

Some properties:

- 1. It is impossible to be late and early;
- 2. It is impossible to directly pass from late to early;
- 3. It is impossible to remain late only one instant;
- 4. If the train stops, it will eventually get late

Properties 1, 2, 3: safety

Property 4: liveness (refer to unbound future)

Outline

- 1. Critical system validation
- 2. Model-checking solution
 - 1. Model specification
 - 2. Model-checking techniques
- 3. Application to middleware for IoT
 - 1. Introduction in middleware design of synchronous components to allow validation
 - 2. Synchronous/asynchronous issue

Safety and Liveness Properties Checking

- Ultra-tiny computer are embedded into
- Use of model checking technique
- Model checking goal: prove safety and liveness properties of a system in analyzing a model of the system.
- Model checking techniques require:
 - model of the system
 - express properties
 - algorithm to check properties againts the model (⇒ decidability)

Model Checking Techniques

- Model = automata which is the set of program behaviors
- Properties expression = temporal logic:
 - LTL : liveness properties
 - CTL: safety properties
- Algorithm =
 - LTL: algorithm exponential wrt the formula size and linear wrt automata size.
 - CTL: algorithm linear wrt formula size and wrt automata size

Model Checking Model

Ultra-tiny computer are embedded into

- Model = finite state machine (automata) which is the set of program behaviors
- Kripke structure:
 - non deterministic automata
 - Oriented graph
 - Nodes are program states
 - To each state, a set of atomic (basic) properties is associated

Model Checking Model

Ultra-tiny computer are embedded into

- Model = finite state machine (automata) which is the set of program behaviors
- Kripke structure over AP (set of atomic propositions)
 - A finite set of states (S)
 - A set of initial states I ⊆ S
 - A transition relation $\Re \subseteq S \times S \mid \forall s \in S, \exists s' \in S \text{ and } (s,s') \in \Re$
 - A labeling function L: S → AP
- How specify such a model ?

Ultra-tiny computer are embedded into

- Model = Mealy automata which is the set of program behaviors (deterministic)
- A Mealy automata is composed of:
 - 1. A finite set of states (Q)
 - 2. A finite alphabet of triggers (T)
 - 3. A finite alphabet of actions (A)
 - 4. An initial state (q^{init} € Q)
 - 5. A transition function $\delta: \mathbb{Q} \times \mathbb{T} \to \mathbb{Q}$
 - 6. An output function $\lambda: \mathbb{Q} \times \mathbb{T} \to 2^{\frac{A}{2}}$

Notation: a transition is denoted $q_1 \xrightarrow{t/a} q_2$

 Model = Mealy automata which is the set of program behaviors

Example: Traffic Light

trigger: tick, reset

action:green,orange,red

Ultra-tiny computer are embedded into

Mealy automata = Kripke structure

- $\bullet \quad \mathbf{A}\mathbf{P} = \mathbf{T} \cup \mathbf{A}\mathbf{k}$
- $\mathbb{S} \subseteq \mathbb{Q} \times 2^{\mathbb{AP}}$; {(q, v) | $\exists q \xrightarrow{t/a} q'$ and $v = \{t\} \cup a \text{ or } v = \emptyset \}$
- $I = \{q^{init}\} \times 2^{AP} \cap S$
- $\mathbb{R} = \{(q,v), (q',v') \mid \exists q \xrightarrow{t/a} q' \text{ and } v = \{t\} \cup a \text{ and } (q',v') \in \mathbb{S}$
- L(q,v) = v

Mealy automata = Kripke structure

Implicit vs Explicit Mealy Machine

Ultra-tiny computer are embedded into a

- Mealy automata is an explicit Mealy Machine
- Implicit representation as Boolean equation system with registers.
- $M = \langle Q, q^{init}, T, A, \delta, \lambda \rangle$ $\xi(M) = \langle T \cup A, R, D \rangle$:
 - R: Boolean registers
 - D: definitions or equations of the form x=e
 - X ∈ A ∪ R⁺ and e Boolean expr built from T ∪ R
 - States are encoded as register combination: $\{q_1,q_2,q_3\}$ is encoded with 2 registers r_1 , r_2 and a possible encoding is : 00, 01,10
 - For each state, δ and λ encoded with truth tables

11/01/2016

Implicit vs Explicit Mealy Machine

Ultra-tiny computer are embedded into a

Registers: X0, X1

Initial values: X0 = 0 and X1 = 0

X0next = not X0 and not X1;

X1next = X0;

orange = not X0 and not X1 and tick; green = not X0 and X1 and tick; red = X0 and not X1 and tick;

Model Checking

How design Mealy automata?

Use synchronous languages to specify critical systems.

Synchronous programs = Mealy automata

Model Specification with Synchronous Languages

Ultra-tiny computer are embedded into

- 1. Synchronous languages have a simple formal model (a finite state machine) making formal reasoning tractable.
- 2. Synchronous languages support concurrency and offer an implicit or explicit means to express parallelism.
- 3. Synchronous languages are devoted to design reactive systems.

Determinism & Reactivity

- Ultra-tiny computer are embedded into
- Synchronous languages are deterministic and reactive
- Determinism:
 - The same input sequence always yields the same output sequence
- Reactivity:
 - The program must react^(*) to any stimulus
 - Implies absence of deadlock
 - (*) Does not necessary generate outputs, the reaction may change internal state only.

Synchronous Reactive Programs (1)

Read

11/01/2016

Synchronous Reactive Programs (1)

Computations

Synchronous Reactive Programs (1)

Atomic execution: read, compute, write

11/01/2016

Synchronous Modelling

- Atomic execution of the reaction
- Logical time
- Well founded
- > Liable to formal analysis

Synchronous Hypothesis

- Oitra-tiny computer are embedded into
- Synchronous languages work on a logical time.
- The time is
 - Discrete
 - Total ordering of instants.

- Use N as time base
- A reaction executes in one instant.
- Actions that compose the reaction may be partially ordered.

Synchronous Hypothesis

- Communications between actors are also supposed to be instantaneous.
- All parts of a synchronous model receive exactly the same information (instantaneous broadcast).
- Outcome: Outputs are simultaneous with Inputs (they are said to be synchronous)
- Thanks to these strong hypotheses, program execution is fully deterministic.

Reactive?

- •
- Different ways to "react" to the environment:
 - Event driven system:
 - Receive events
 - Answer by sending events
 - Data flow system:
 - Receive data continuously
 - Answer by treating data continuously also

Some systems have components of both kinds

Event Driven Reactive System

Ultra-tiny computer are embedded into a

Langing gear management

Data Flow Reactive System (Example)

Ultra-tiny computer are embedded into o

Control/Command vehicle

Periodic processus navigation guidance piloting

get measures

- where am I?
- where go I?
- command computation

command to operators

Imperative and Declarative languages

Ultra-tiny computer are embedded into o

- Different ways to express synchronous programs:
 - Imperative languages rely on implicitly or explicitly finite state machines, well suited to design event driven reactive system
 - Declarative languages rely on operator networks computing data flows, well suited to design data flow reactive system

Imperative Language

Event driven applications can be designed with an imperative language (as Esterel)

- 1. Listen input and output events
- 2. Specific operators to deal with the logical time (await)
- 3. Test of presence or absence of signals (present)
- 4. Synchronous parallelism (||)
- 5. Emit to change the environment (emit S)
- 6. Usual operators (loop, abort when)

Esterel program example

Ultra-tiny computer are embedded into a

module RUNNER:

Constant NumberOfLaps: integer; input Morning, Second, Meter, Step, Lap; output Walk, Jump, Run;

Program body (next slide)

end module

Esterel program example

Ultra-tiny computer are embedded into

```
every Morning do
 repeat NumberOfLaps times
                                                sequence
  abort
    abort sustain Walk when 100 Meter; <
    abort
       every Step do emit Jump end every
    when 15 Second;
    sustain Run
  when Lap
 end repeat
end every
```

Esterel program = Mealy Machine

Ultra-tiny computer are embedded into

Ubiquitous Network

```
module ABRO:
 input A, B, R;
 output O;
 loop
  [await A | await B];
  emit 0;
 each R
end module
```


Data flow = Operator Networks

Data flow programs can be interpreted as networks of operators.

Data « flow » to operators where they are consumed. Then, the operators generate new data. (Data Flow description).

Operator

op1

op3

Token
(data)

Flows, Clocks

Ultra-tiny computer are embedded into

- A flow is a pair made of
 - A possibly infinite sequence of values of a given type
 - A clock representing a sequence of instants

X:T
$$(x_1, x_2, ..., x_n, ...)$$

An example of Data Flow

Ultra-tiny computer are embedded into @

Ultra-tiny computer are embedded into o

Ultra-tiny computer are embedded into o

Data Flow Synchronous Languages

Ultra-tiny computer are embedded into

Ubiquitous Network

operator Average (X,Y:int) returns (M:int) M = (X + Y)/2

$$X = (X_1, X_2,, X_n,)$$

 $Y = (Y_1, Y_2,, Y_n,)$
 $M = ((X_1+Y_1)/2, (X_2+Y_2)/2,, (X_n+Y_n)/2,)$

Memorizing to take the past into account:

1. pre (previous):

$$X = (x_1, x_2,, x_n,)$$
:
 $pre(X) = (nil, x_1, x_2,, x_n,)$
 $nil undefined value denoting uninitialized$
 $memory$

2. \rightarrow (initialize):

$$X = (x_1, x_2, ..., x_n, ...), Y = (y_1, y_2, ..., y_n, ...)$$

 $X \rightarrow Y = (x_1, y_2, ..., y_n, ...)$

Sequential examples

Ultra-tiny computer are embedded into o

$$n=0 \rightarrow pre(n) + 1$$

operator MinMax (x:int) returns (min,max:int): min = $x \rightarrow$ if (x < pre(min) then x else pre(min) max = $x \rightarrow$ if (x > pre(max) then x else pre(max)

$$x=(3, 4, 5, 2, 7,)$$

 $min = (3, 3, 3, 2, 2,)$
 $max = (3, 4, 5, 5, 7,)$

11/01/2016

Sequential examples

Ultra-tiny computer are embedded into o

```
operator CT (init:int) returns (c:int):

c = init \rightarrow pre(c) + 2
```

```
operator DoubleCall (even:bool) returns (n:int)
n= if (even) then CT(0) else CT(1)
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ?
```

Sequential examples

Ultra-tiny computer are embedded into o

```
operator CT (init:int) returns (c:int):
      c = init \rightarrow pre(c) + 2
        CT(0) = (0,2,4,6,8,10,12,14,16,18,....)
        CT(1) = (1,3,5,7,9,11,13,15,17,19,....)
operator DoubleCall (even:bool) returns (n:int)
   n= if (even) then CT(0) else CT(1)
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ?
          (1,3,4,6,9,11,12,14,17)
```

Modulo Counter

Ultra-tiny computer are embedded into

Modulo Counter Clock

Ultra-tiny computer are embedded into a

```
operator MCounterClock (incr:bool;
                           modulo: int)
                   returns(cpt:int;
                           modulo clock: bool);
  var count : int;
   count = 0 \rightarrow if incr pre (cpt) + 1
                 else pre (cpt);
   cpt = count mod modulo;
    modulo clock = count != cpt;
```

Modulo Counter Clock

Ultra-tiny computer are embedded into

```
MCounterClock(true,3):
                           0 1 2 3 1 2 3......
        count:
                            0 1 2 0 1 2 0......
        cpt =
        modulo clock = ff ff ff tt ff ff tt ....
var count : int;
   count = 0 \rightarrow if incr pre (cpt) + 1
                  else pre (cpt);
   cpt = count mod modulo;
   modulo clock = count != cpt;
```

Timer

Ultra-tiny computer are embedded into

```
operator Timer returns (hour, minute, second:int);
var hour_clock, minute_clock, day_clock : bool;

(second, minute_clock) = MCounterClock(true, 60);
(minute, hour_clock) = MCounterClock(minute_clock,60);
(hour, dummy clock) = MCounterClock(hour clock, 24);
```


Data flow programs are compiled into automata

Ultra-tiny computer are embedded into

```
operator WD (set, reset, deadline:bool)
               returns (alarm:bool);
var is set:bool;
 alarm = is set and deadline;
 is set = false -> if set then true
                  else if reset then false
                       else pre(is set);
 assert not(set and reset);
tel.
```

Ultra-tiny computer are embedded into

```
First, the program is translated into pseudo code:
```

```
if _init then // first instant (or reaction)
 is_set := false; alarm := false;
  init := false;
else // following reactions
 if set then is set := true
 else
   if reset then is_set := false;
   endif
 endif
 alarm := is set and deadline;
endif
```


Ultra-tiny computer are embedded into

Choose state variables: _init and variables which have pre.

```
For WD, we consider 2 state variables: __init (true, false, false, ....) and pre(is_set)
```

3 states:

```
S0: _init = true and pre(is_set) = nil
S1: _init = false and pre(is_set) = false
```

S2: _init = false and pre(is_set) = true

S0: alarm := false;

Ultra-tiny computer are embedded into o

Ubiquitous Network

initial

```
S1:
```

```
_init := false
pre(is_set) := false
```

```
if _init then // first instant (or
reaction)
  is set := false; alarm := false;
  <u>_init</u> := false;
else // following reactions
  if set then is set := true
 else
   if reset then is_set := false;
   endif
 endif
 alarm := is_set and deadline;
endif
```



```
Ultra-tiny computer are embedded into
                             S0: alarm := false;
initial
                                                      if _init then // first instant (or
                                                      reaction)
                                                  S2:
                                                        is_set := false; alarm := false;
                                                          init := false;
S1: if set then
                                                      else // following reactions
    alarm:= deadline;
                                                        if set then is_set := true
                                         set
    go to S2;
                                                        else
   else
                                                          if reset then is_set := false;
    alarm := false;
                                                          endif
    go to S1;
                                                        endif
                                                        alarm := is_set and deadline;
                                                      endif
   <del>-set</del>
```


S0: alarm := false;

Ultra-tiny computer are embedded into

```
initial
```

```
if _init then // first instant (or
reaction)
 is_set := false; alarm := false;
  <u>_init</u> := false;
else // following reactions
 if set then is_set := true
 else
   if reset then is_set := false;
   endif
 endif
 alarm := is_set and deadline;
endif
```

```
set

S2: if set then

alarm := deadline;

go to S2;

else

if reset then

alarm := false;

go to S1;

else

alarm := deadline;

go to S2;
```


Ultra-tiny computer are embedded into @

```
S0: alarm := false;
 initial
                                                    S2: if set then
                                                         alarm := deadline;
S1: if set then
                                                         go to S2;
                                                        else
     alarm:= deadline;
                                           set
                                                         if reset then
    go to S2;
                                                           alarm := false;
   else
                                                           go to S1;
     alarm := false;
                                                         else
     go to S1;
                                                           alarm := deadline;
                                         reset
                                                         go to S2;
                                                                             ¬reset
   <del>-set</del>
```

Model Checking Technique

- Model = automata which is the set of program behaviors
- Properties expression = temporal logic:
 - LTL: liveness properties
 - CTL: safety properties
- Algorithm =
 - LTL: algorithm exponential wrt the formula size and linear wrt automata size.
 - CTL: algorithm linear wrt formula size and wrt automata size

Properties Checking

Ultra-tiny computer are embedded into @

- Liveness Property Φ :
 - $-\Phi \Rightarrow automata B(\Phi)$
 - $L(B(\Phi)) = \emptyset$ decidable
 - $-\Phi \models M : L(M \otimes B(^{\sim}\Phi)) = \emptyset$

Safety Properties

Ultra-tiny computer are embedded into o

- CTL formula characterization:
 - Atomic formulas
 - Usual logic operators: not, and, or (\Rightarrow)
 - Specific temporal operators:
 - EX \varnothing , EF \varnothing , EG \varnothing
 - AX \varnothing , AF \varnothing , AG \varnothing
 - $EU(\varnothing_1,\varnothing_2)$, $AU(\varnothing_1,\varnothing_2)$

Safety Properties Verification

We call $Sat(\emptyset)$ the set of states where \emptyset is true.

$$\mathcal{M} \mid = \emptyset \text{ iff } s_{init} \in Sat(\emptyset).$$

Algorithm:

Sat(
$$\Phi$$
) = { s | Φ |= s}
Sat(not Φ) = S\Sat(Φ)
Sat(Φ 1 or Φ 2) = Sat(Φ 1) U Sat(Φ 2)
Sat (EX Φ) = {s | \exists t \in Sat(Φ), s \rightarrow t} (Pre Sat(Φ))
Sat (EG Φ) = gfp (Γ (x) = Sat(Φ) \cap Pre(x))
Sat (E(Φ 1 U Φ 2)) = lfp (Γ (x) = Sat(Φ 2) U (Sat(Φ 1) \cap Pre(x))

Example

Ultra-tiny computer are embedded into o

EG (a or b)

$$gfp (\Gamma(x) = Sat(a \text{ or b}) \cap Pre(x))$$

$$\Gamma(\{s_0, s_1, s_2, s_3, s_4\}) = Sat (a or b) \cap Pre(\{s_0, s_1, s_2, s_3, s_4\})$$

$$\Gamma(\{s_0, s_1, s_2, s_3, s_4\}) = \{s_0, s_1, s_2, s_4\} \cap \{s_0, s_1, s_2, s_3, s_4\}$$

$$\Gamma(\{s_0, s_1, s_2, s_3, s_4\}) = \{s_0, s_1, s_2, s_4\}$$

Example

Ultra-tiny computer are embedded into @

EG (a or b)
$$\Gamma(\{s_0, s_1, s_2, s_3, s_4\}) = \{s_0, s_1, s_2, s_4\}$$

$$\Gamma(\{s_0, s_1, s_2, s_4\}) = Sat (a or b) \cap Pre(\{s_0, s_1, s_2, s_4\})$$

$$\Gamma(\{s_0, s_1, s_2, s_4\}) = \{s_0, s_1, s_2, s_4\}$$

$$S_0 = EG(a or b)$$

- Problem: the size of automata
- Solution: symbolic model checking
- Usage of BDD (Binary Decision Diagram) to encode both automata and formula.
- Each Boolean function has a unique representation
- Shannon decomposition:

•
$$f(x_0, x_1, ..., x_n) = f(1, x_1, ..., x_n) \vee f(0, x_1, ..., x_n)$$

Ultra-tiny computer are embedded into

- When applying recursively Shannon decomposition on all variables, we obtain a tree where leaves are either 1 or 0.
- BDD are:
 - A concise representation of the Shannon tree
 - no useless node (if x then g else g ⇔ g)
 - Share common sub graphs

Ultra-tiny computer are embedded into o

$$(x_1 \land y1) \lor (x_0 \land y_0 \land x_1)$$

Ultra-tiny computer are embedded into o

Ultra-tiny computer are embedded into o

Ultra-tiny computer are embedded into o

Ultra-tiny computer are embedded into @

Ultra-tiny computer are embedded into

Ultra-tiny computer are embedded into @

Ultra-tiny computer are embedded into

- Implicit representation of the of states set and of the transition relation of automata with BDD.
- BDD allows
 - canonical representation
 - test of emptiness immediate (bdd =0)
 - complementarity immediate (1 = 0)
 - union and intersection not immediate
 - Pre immediate

Ultra-tiny computer are embedded into

- But BDD efficiency depends on the number of variables
- Other method: SAT-Solver
 - Sat-solvers answer the question: given a propositional formula, is there exist a valuation of the formula variables such that this formula holds
 - first algorithm (DPLL) exponential (1960)

Ultra-tiny computer are embedded into

- SAT-Solver algorithm:
 - formula → CNF formula → set of clauses
 - heuristics to choose variables
 - deduction engine:
 - propagation
 - specific reduction rule application (unit clause)
 - Others reduction rules
 - conflict analysis + learning

Ultra-tiny computer are embedded into

SAT-Solver usage:

- encoding of the paths of length k by propositional formulas
- the existence of a path of length k (for a given k) where a temporal property Φ is true can be reduce to the satisfaction of a propositional formula
- theorem: given Φ a temporal property and \mathbf{M} a model, then $\mathbf{M} \models \Phi \Rightarrow \exists n$ such that $\mathbf{M} \models_n \Phi$ (n < |S| . 2 $|\Phi|$)

 SAT-Solver are used in complement of implicit (BDD based) methods.

- **M** |= Ф
 - verify $\neg \Phi$ on all paths of length k (k bounded)
 - useful to quickly extract counter examples

Ultra-tiny computer are embedded into a

Given a property p
Is there a state reachable in k steps, which satisfies $\neg p$?

Ultra-tiny computer are embedded into

The reachable states in k steps are captured by:

$$I(s_0) \wedge T(s_0, s_1) \wedge \dots \wedge T(s_{k-1}, s_k)$$

The property p fails in one of the k steps

$$\neg p(s_0) \ V \ \neg p(s_1) \ V \ \neg p(s_2) \ \dots \ V \ \neg p(s_{k-1}) \ V \ \neg p(s_k)$$

The safety property p is valid up to step k iff $\Omega(k)$ is unsatisfiable:

$$\Omega(k) = I(s_0) \wedge (\bigwedge_{i=0}^{k-1} T(s_i, s_{i+1})) \wedge (\bigvee_{i=0}^{k} \neg p(s_i))$$

Ultra-tiny computer are embedded into o

Bounded Model Checking

Ultra-tiny computer are embedded into

- Computing CT is as hard as model checking.
- Idea: Compute an over-approximation to the actual CT
 - Consider the system as a graph.
 - Compute CT from structure of the graph.
- Example: for AGp properties, CT is the longest shortest path between any two reachable states, starting from initial state

Model Checking with Observers

- Express safety properties as observers.
- An observer is a program which observes the program and outputs ok when the property holds and failure when its fails

Model Checking with observers (2)

P: aircraft autopilot and security system

aircraft_altitude | P | landing_order | landin

Properties Validation

- Ultra-tiny computer are embedded into
- Taking into account the environment
 - without any assumption on the environment,
 proving properties is difficult
 - but the environment is indeterminist
 - Human presence no predictable
 - Fault occurrence
 - ...
 - Solution: use assertion to make hypothesis on the environment and make it determinist

Properties Validation (2)

- Express safety properties as observers.
- Express constraints about the environment as assertions.

Properties Validation (3)

• if assume remains true, then ok also remains true (or failure false).

Outline

Ultra-tiny computer are embedded into

- 1. Critical system validation
- 2. Model-checking solution
 - 1. Model specification
 - 2. Model-checking techniques
- 3. Application to middleware for IoT (~Wcomp)
 - Introduction in middleware design of synchronous components to allow validation
 - 2. Synchronous /asynchronous issues

Practical Issues

Ultra-tiny computer are embedded into o

Application to Middleware for IoT

Practical Issues

Ultra-tiny computer are embedded into a

Our challenges are:

- •How to maintain consistency in spite of concurrent accesses by multiple services and multiple applications to a common Entity of Interest?
- How to deal with dynamic context changes?
- •Introduce in Middleware specific components (synchronous components) on which model checking technique applies

Application to Middleware

Ultra-tiny computer are embedded into o

Synchronous Models

Ultra-tiny computer are embedded into a

To sum up:

- 1. Synchronous models can be designed as event-driven controllers or as data flow operator networks
- 2. They always represent automata
- 3. Model-checking techniques apply

Application to Adaptive Middleware

Ultra-tiny computer are embedded into

- Our goal is to ensure safety for applications using and managing services.
- Devices will have a synchronous component to allow model-checking techniques application as validation
- Synchronous component to express constraints between concurrent services
- Synchronous parallelism as composition

Use Case

Entity of interest: temperature controlled room

Use Case

- Use case: manage room temperature
 - Temperature controlled by 2 internet objects: air condinner and heater
 - 2. Two applications use these devices:
 - 1. APP1: to cool the room simultaneous
 - 2. APP2: to warm the room
 - 3. Constraints:
 - ❖ APP1 is launch by Paul smartphone
 - APP2 is launch by Pierre smartphone
 - The air conditioner and the heater cannot be switch on simultaneously

Use Case Implementation

Ultra-tiny computer are embedded into @

11/01/2016 123

Use Case Implementation

Ultra-tiny computer are embedded into o

Application constraints

Use Case Implementation

How specify the Heater synchronous model?

How specify both device and application constraints as synchronous models?

Solution: use a synchronous language

First Solution: SCADE

Ultra-tiny computer are embedded into a

- Scade (Safety-Critical Application Development Environment) has been developed to address safety-critical embedded application design
- The Scade suite KCG code generator has been qualified as a development tool according to DO-178B norm at level A.

11/01/2016 126

SCADE

Ultra-tiny computer are embedded into

- Scade has been used to develop, validate and generate code for:
 - avionics:
 - Airbus A 341: flight controls
 - Airbus A 380: Flight controls, cockpit display, fuel control, braking, etc,..
 - Eurocopter EC-225 : Automatic pilot
 - Dassault Aviation F7X: Flight Controls, landing gear, braking
 - Boeing 787: Landing gear, nose wheel steering, braking

SCADE

- System Design
 - Both data flows and state machines
- Simulation

Graphical simulation, automatic GUI integration

- Verification
 - Apply observer technique
- Code Generation
 - certified C code

Modulo Counter

Ultra-tiny computer are embedded into

Modulo Counter

Modulo Counter Clock

Ultra-tiny computer are embedded into a

```
operator MCounterClock (incr:bool;
                           modulo: int)
                   returns(cpt:int;
                           modulo clock: bool);
  var count : int;
   count = 0 \rightarrow if incr pre (cpt) + 1
                 else pre (cpt);
   cpt = count mod modulo;
    modulo clock = count <> cpt;
```

Modulo Counter Clock

Ultra-tiny computer are embedded into @

Timer

Ultra-tiny computer are embedded into

Timer

true | SECOND ModuloCounter 2 ModuloCounter MINUTES **** dummy 3 ModuloCounter 24 H

SCADE: state machines

Ultra-tiny computer are embedded into

- Input and output: same interface
- States:
 - Possible hierarchy
 - Start in the initial state
 - Content = application behavior
- Transitions:
 - From a state to another one
 - Triggered by a Boolean condition

11/01/2016 135

SCADE: state machines

When off, ison = false

SCADE: model checking

Observer technique

posture model

posture model specification in scade

SCADE: model checking

Observer technique

posture verification

assume (lying # sitting # standing)

SCADE: code generation

Ultra-tiny computer are embedded into a

- KCG generates certifiable code (DO-178 compliance)
- Clean code, rigid structure (possible integration)
- Interfacing potential with user-defined code (c/c++)

11/01/2016 139

CLEM versus SCADE

Ultra-tiny computer are embedded into o

- SCADE suite:
 - Complex design environment
 - C code not embedded into C# bean easily
 - closed compilation environment
- Solution: use CLEM toolkit to specify and verify synchronous monitor before integration:
 - own compilation means
 - C# code generation

CLEM ISSUE

Ultra-tiny computer are embedded into o

CLEM is a toolkit around the LE synchronous language offering:

- Modular compilation
- Simulation
- Verification
- Code generation for hardware and software targets (C#)

11/01/2016 141

LE Language

- LE synchronous language
 - Textual imperative language (~ Esterel)
 - Usual synchronous languages operators:
 - || ; abort ; strong abort; sequence (>>); present; loop; emit
 - wait pause
 - run to call external module
 - Explicit Mealy machine (automata designed with Galaxy)
 - Implicit Mealy machine (~data flow)

LE Language

Ultra-tiny computer are embedded into o

```
module Parallel:
Input:I;
Output: O1, O2,O3;
 emit O1
 wait I >> emit O2
 emit O3
```


end

LE Language

Ultra-tiny computer are embedded into o

module Parallel:

Input:I;

Output: O1, O2,O3;

Mealy Machine

Register:

X0: 0: X0next;

X1: 0 : X1next;

X0next = X0 and not X1;

X1next = X0 and X1 or not X1 and I

or not X0 and X1;

O1 = not X0 and not X1;

O2 = X0 and not X1 and I;

O3 = not X0 and not X1;

LE Compilation

Ultra-tiny computer are embedded into a

- Compilation into implicit Mealy machines (Boolean equation systems with registers)
- Compilation ⇒ sort equation systems
- Challenge: modular compilation?
 - → face causality problem
 - causality = no evaluation cycle in equation systems
 - total order prevents modularity
 - issue: compute partial orders

LE Compilation

Ultra-tiny computer are embedded into o

```
module first:
Input: I1,I2;
Output: O1,O2;
loop {
  pause >> {
  present I1 {emit O1} |
  present I2 {emit O2} }
} end
```

```
module second:
Input: 13;
Output: O3;
loop {
  pause >> present 13 {emit O3}
}
end
```

```
module final:
Input: I;
Output O;
local L1,L2 {
  run first[ L2\I1,O\O1,I\I2,L1\O2]
  ||
  run second[ L1\I3,L2\O3]
}
end
```

$$L1 = I$$
 $C = L2$ $C = L2$ $C = L1$

11/01/2016

02 = 12

01 = 11

LE Compilation

Ultra-tiny computer are embedded into a

- Sorting algorithms:
 - Apply CPM on dependency graphs of equation systems to compute ranges of evaluation levels for variables (efficient)
 - 2. apply fix point theory:
 - Compute variable evaluation levels as fix point of a monotonic increasing function
 - Uniqueness of fixpoints we can consider a global sorting as well as a local and separate sorting

11/01/2016 147

CLEM Simulation and Verification

Ultra-tiny computer are embedded into o

- Simulation:
 - Based on either blif_simul an interpretor for blif code generated by CLEM or cles a lec code interpretor
- Verification:
 - 1. NuSMV model checker (code generated)
 - 2. blif_check for small application

Synchronous Component Design with CLEM

Automata

Bool. equations

O1 = i1

and i2.....

Synchronous modeling

cit Moal

Explicit Mealy machine designed with Galaxy or Implicit Mealy machine designed as Boolean equations in Clem

Ultra-tiny computer are embedded into @

Dynamicity: Appearance of a new device

11/01/2016 151

Dynamicity: Appearance of a new Application

Dynamicity: Disappearance of a device

Dynamicity: Disappearance of an application

Constraint Controller Design

Ultra-tiny computer are embedded into @

Automatic generation of the constraint controller?

Description Constraint Language

Ultra-tiny computer are embedded into a

- ✓ Need of only application and device types
- ✓ Generic constraints description to manage multiple accesses
- ✓ Generation of CLEM implicit Mealy machines describing constraint controller behaviors
- ✓ Dealing with dynamic environments changes : appearance and disappearance of applications/devices.

Validation with CLEM

Ultra-tiny computer are embedded into o

Application to WComp

Ultra-tiny computer are embedded into @

automatic generation C# beans

Use Case Issue in CLEM

Ultra-tiny computer are embedded into o

air_cond_swith_on = switch_on; air_condi_switch off = switch_off air_cond_is_on = is_on; air_cond_is_off = is_off


```
heater_swith_on = switch_on; air_heater_switch off = switch_off
heater_is_on = is_on; heater_is_off = is_off

switch_on/is_on

switch_off/is_off

oN
switch_on/is_on

eater

switch_off/is_off
```

Use Case in CLEM

Ultra-tiny computer are embedded into @

Use Case in CLEM

Ultra-tiny computer are embedded into @

```
is_on
air cond is on, air cond is off
 air_cond_inhib, heater_inhib
                                  Constraint
                                  Controlller
heater is on, heater is off
                                  Mealy
                                  machine
                                    is_off
```

```
module ConstraintController:
Input: air_cond_is_on, air_cond_is_off,
       heater is on, heater is off,
       air cond inhib, heater inhib;
Output: is on, is off;
local ac is on, ac is off, h is on, h is off
 Mealy machine:
  ac is on = air cond is on and not air cond inhib;
  ac is off = air cond is off anf not air cond inhib;
  h is off = heater is off and not heater inhib;
  h is off = heater is off and not heater inhib;
  is_on = (ac_is_on and not h_is_on) or
          (h is on and not ac is on);
  is_off = h_is_off and ac_is_off;
end
```

Use Case in CLEM

Ultra-tiny computer are embedded into o

```
module ConstraintComponent:
Input: air_cond_switch_on, air_cond_switch_off, air_cond_inhib, heater_switch_on,
      heater_switch_off, heater_inhib;
Output: is on, is off;
local air cond is on, air cond is off, heater is on, heater is off
  run AC_H_model[air_cond_switch_on\ switch_on, air_cond_switch_off\switch_off,
                   air cond is on\is on, air cond is off\is off]
 run AC H model[heater switch on\switch on, heater switch off\switch off,
                   heater is on\is on, heater is off\is off]
 run ConstraintController
end
```

C# Bean Generation

Ultra-tiny computer are embedded into

LE Constraint Component

Validation (CLEM blif_check):

air_cond_switch_on and heater_switch_off =>
 is_on
air_cond_inhib and heater_inhib => not is_on

C# Bean Generation

run automaton reset automaton

C# Bean Integration

Ultra-tiny computer are embedded into

- C# Bean implements synchronous component in Wcomp
- Communication is asynchronous in WComp
- ⇒
 - need of a synchronizer to collect asynchronous events and build the logical event for the synchronous monitor
 - need for the reverse operation to plunge the outputs of the instant into asynchronous events

C# Bean Generation

Ultra-tiny computer are embedded into

asynchronous data

synchronous data

Ultra-tiny computer are embedded into o

- Synchronization goal:
 - generate the set of synchronous input events that characterizes the synchronous logical instant.
 - Define an exchange format to allow communication between synchronous monitors and asynchronous components
- Un-synchronization goal:

1. Generate the set of asynchronous output events from synchronous output events computed by the synchronous component.

Ultra-tiny computer are embedded into o

- How define the logical instant?
 - The synchronization phase should be generic and allow to take into account several types of devices.
 - Introduction of a generic structure to represent events coming from different sensors:
 - name, presence, value type, value, elapsed time
 - apply several sampling policies: elapsed time, occurrence, average

How define the logical instant?

Synchronous instant

Ultra-tiny computer are embedded into o

- Exchange format to get a means to establish communication between input methods and output events in Wcomp.
- ⇒ Serialization/Deserialization of events. Two serialization proposals:
 - 1. "[<name> = <occurrence>,[<type>, <valeur>]?;]+"
 - a = false; b = true; v = true, int, 7;"
 - 2. ["<name>"<occurrence> <type> <valeur>"]+
 - "a false" "b true" "v true int 7"

11/01/2016 169

Ultra-tiny computer are embedded into a

Synchronous component

Ultra-tiny computer are embedded into

Un-serialization

Run automaton
Reset automaton

Outputs serialization

Synchronous component

Ouputs generator

Un-serialization (string → events)

Sending Policies

Asynchronous events