
 Safety in Middleware for IoT

Annie Ressouche

Inria-sam (stars)

annie.ressouche@inria.fr

http://www-sop.inria.fr/members/Annie.Ressouche/teaching.html

2 12/07/2015

Entity of Interest

M4IOT2015 ines.sarray@inria.fr

3 12/07/2015

Entity of Interest

M4IOT2015 ines.sarray@inria.fr

What about
shared devices ?

4 12/07/2015

Entity of Interest

M4IOT2015 ines.sarray@inria.fr

What about
shared devices ?

Conflicts between
applications ?

 Introduction

• How to maintain consistency in spite of

concurrent accesses by multiple services and

multiple applications to a common Entity of

Interest ?

• How to deal with dynamic context changes ?

• Solution: apply general techniques used to
develop critical software

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to middleware for IoT

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous/asynchronous issue

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to component based adaptive
middleware

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous/asynchronous issue

Critical Software

A critical software is a software whose failing

has serious consequences:

• Nuclear technology

• Transportation

•Automotive

•Train

•Aircraft construction

 …

Critical Software

• In addition, other consequences are relevant
to determine the critical aspect of software:

• Financial aspect

• Loosing equipment, bug correction

• Equipment callback (automotive)

• Bad advertising

Example: Ariane5 launcher

• 9 Jul 1996 Ariane5 launcher explodes
• Same software as Ariane4
• Causes:

• Variable to carry horizontal acceleration encoded
with 8 bits (ok for Ariane4, not sufficient for
Ariane5)

• Result: variable overflow
• The rocket had an incorrect trajectory and

engineers blow it up
• Cost: > 1 million euros (2 satellites lost)

Software Classification

A Catastrophic (human life loss)

B Dangerous (serious injuries, loss
of goods)

C Major (failure or loss of the
system)

D Minor (without consequence on
the system)

E Without effect

Example of the aeronautics norm
DO178B:

Depending of the level of risk
of the system, different kinds
of verification are required

Software Classification

Minor acceptable situation

Major

Dangerous Unacceptable situation

catastrophic 10-3 / hour 10-6 /
hour

10-9/hour 10-12
/hour

probabilities probable rare very rare very
improbable

How Develop critical software ?

Classical Development U Cycle

investigation
Qualification
 in laboratory
 in operation

specification

design

development tests

integration

validation

tests white box

tests black box

tests of integrated system

11/01/2016 13

How Develop Critical Software ?

• Cost of critical software development:
• Specification : 10%

• Design: 10%

• Development: 25%

• Integration tests: 5%

• Validation: 50%

• Fact:

– Earlier an error is detected, less expensive its
correction is.

11/01/2016 14

Cost of Error Correction

11/01/2016 15

error detection time

cost of
error

correction

Put the effort on the upstream phase

development based on models

How Develop Critical Software ?

• Goals of critical software specification:

– Define application needs

•  specific domain engineers

– Allowing application development

• Coherency

• Completeness

– Allowing application functional validation

• Express properties to be validated

 Formal model usage

11/01/2016 16

Critical Software Specification

• First Goal: must yield a formal description

of the application needs:

– Standard to allowing communication between

computer science engineers and non computer

science ones

– General enough to allow different kinds of

application:

• Synchronous (and/or)

• Asynchronous (and/or)

• Algorithmic
11/01/2016 17

Critical Software Specification

• Second Goal: allowing errors detection

carried out upstream:

– Validation of the specification:

• Coherency

• Completeness

• Proofs

– Test

• Quick prototype development

• Specification simulation

11/01/2016 18

Critical Software Specification

11/01/2016 19

helium
tank low

hydrogen
tank low

action action

Simultaneous
events ?

unspecified action

Critical Software Specification

• Third goal: make easier the transition from

specification to design (refinement)

– Reuse of specification simulation tests

– Formalization of design

– Code generation

• Sequential/distributed

• Toward a target language

• Embedded/qualified code

11/01/2016 20

How Develop Critical Software

test reuse
test coverage

test generation
MODEL

proofs

code

automatic code
generation

functional
validation

abstract
interpretation

simulation

no more
integration tests

Critical Software Validation

• What is a correct software?

– No execution errors, time constraints
respected, compliance of results.

• Solutions:

– At model level :
• Simulation

• Formal proofs

– At implementation level:
• Test

• Abstract interpretation

Validation Methods

• Testing

– Run the program on set of inputs and check the
results

• Static Analysis

– Examine the source code to increase confidence
that it works as intended

• Formal Verification

– Argue formally that the application always works as
intended

Testing

• Dynamic verification process applied at

implementation level.

• Feed the system (or one if its components)

with a set of input data values:

– Input data set not too large to avoid huge time

testing procedure.

– Maximal coverage of different cases required.

11/01/2016 24

Program Testing

Concrete semantics

Test coverage
errors

all program executions

executions tested ok

undetected
failure

“Testing only highlights
bugs but not ensure their
absence “ (E. Dijkstra)

11/01/2016 25

Static Analysis

• The aim of static analysis is to search for

errors without running the program.

• Abstract interpretation = replace data of

the program by an abstraction in order to

be able to compute program properties.

• Abstraction must ensure :

• A(P) “correct”  P correct

• But A(P) “incorrect”  ?

11/01/2016 26

Static Analysis: example

abstraction: integer by intervals

1: x:= 1;

2: while (x < 1000) {

3: x := x+1;

4: }

x1 = [1,1]

x2 = x1 U x3 ∩ [-∞, 999]

x3 = x2  [1,1]

x4 = x1 U x3 ∩ [1000, ∞]

Abstract interpretation theory  values

are fix point equation solutions.

11/01/2016 27

Formal Verification

• What about functional validation ?

– Does the program compute the expected outputs?

– Respect of time constraints (temporal properties)

– Intuitive partition of temporal properties:

• Safety properties: something bad never happens

• Liveness properties: something good eventually
happens

Safety and Liveness
Properties

• Example: train timetable

– Count the difference between marks and seconds

– Decide when the train is ontime, late, early

– ontime : difference = 0

– late : difference > 3 and it was ontime before or
difference > 1 and it was already late before

– early : difference < -3 and it was ontime before or
difference < -1 and it was early before

Safety and Liveness
Properties

• Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

• Properties 1, 2, 3 : safety

• Property 4 : liveness

Safety and Liveness Properties

Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

Properties 1, 2, 3 : safety

Property 4 : liveness (refer to unbound future)

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to middleware for IoT

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous/asynchronous issue

Safety and Liveness Properties
Checking

• Use of model checking technique

• Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

• Model checking techniques require:

– model of the system

– express properties

– algorithm to check properties againts the
model ( decidability)

Model Checking Techniques

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:

– LTL : liveness properties

– CTL: safety properties

• Algorithm =

– LTL : algorithm exponential wrt the formula size
and linear wrt automata size.

– CTL: algorithm linear wrt formula size and wrt
automata size

Model Checking Model

• Model = finite state machine (automata) which is the
set of program behaviors

• Kripke structure:
• non deterministic automata

• Oriented graph

• Nodes are program states

• To each state , a set of atomic (basic) properties is
associated

35 11/01/2016 35

Model Checking Model

• Model = finite state machine (automata) which is the
set of program behaviors

• Kripke structure over AP (set of atomic propositions)
• A finite set of states (S)

• A set of initial states I ⊆ S
• A transition relation R ⊆ S x S | ∀s ∊ S, ∃ s’ ∊ S and (s,s’)

∊ R
• A labeling function L: S → AP

• How specify such a model ?

 36 11/01/2016 36

Model Specification

• Model = Mealy automata which is the set of
program behaviors (deterministic)

• A Mealy automata is composed of:
1. A finite set of states (Q)

2. A finite alphabet of triggers (T)

3. A finite alphabet of actions (A)

4. An initial state (qinit € Q)

5. A transition function δ: Q x T → Q
6. An output function λ : Q x T → 2 A

37

Notation: a transition is denoted q1 q2
t/a

Model Specification

• Model = Mealy automata which is the set of
program behaviors

 Example: Traffic Light

trigger: tick, reset

action:green,orange,red

Model Specification

Mealy automata = Kripke structure

• AP = T ∪ A
• S ⊆ Q x 2AP ; {(q, v) |∃ q q’ and v = {t} ∪a or v = ⌀ }
• I = {qinit } x 2AP ⋂ S
• R = {(q,v), (q’,v’) | ∃ q q’ and v = {t} ∪a and (q’,v’) ∊ S
• L(q,v) = v

t/a

t/a

Model Specification

Mealy automata = Kripke structure

Implicit vs Explicit Mealy

Machine

• Mealy automata is an explicit Mealy Machine

• Implicit representation as Boolean equation

system with registers.

• M = <Q, qinit, T, A, δ, λ> ξ (M) = < T ∪ A, R, D>:

– R: Boolean registers

– D : definitions or equations of the form x=e

• X ∊ A ∪ R+ and e Boolean expr built from T ∪ R

• States are encoded as register combination: {q1,q2,q3} is

encoded with 2 registers r1, r2 and a possible encoding is : 00,

01,10

• For each state, δ and λ encoded with truth tables

11/01/2016 41

Implicit vs Explicit Mealy
Machine

Registers: X0, X1
Initial values: X0 = 0 and X1 = 0

X0next = not X0 and not X1;
X1next = X0;

orange = not X0 and not X1 and tick;
green = not X0 and X1 and tick;
red = X0 and not X1 and tick;

00 10

01

Model Checking

How design Mealy automata ?

Use synchronous languages to specify critical

systems.

Synchronous programs = Mealy automata

Model Specification with Synchronous

Languages

1. Synchronous languages have a simple formal
model (a finite state machine) making formal
reasoning tractable.

2. Synchronous languages support concurrency
and offer an implicit or explicit means to express
parallelism.

3. Synchronous languages are devoted to design
reactive systems.

Determinism & Reactivity

• Synchronous languages are deterministic and reactive

• Determinism:
• The same input sequence always yields the same output

sequence

• Reactivity:
• The program must react(*) to any stimulus

• Implies absence of deadlock
• (*) Does not necessary generate outputs, the reaction may change internal state only.

Synchronous Reactive Programs (1)

Environment

Read

11/01/2016 46

Synchronous Reactive Programs (1)

Environment

Computations

11/01/2016 47

Synchronous Reactive Programs (1)

Environment

Write

Atomic execution: read, compute, write

11/01/2016 48

Synchronous Modelling

12/07/2015 49 M4IOT2015 ines.sarray@inria.fr

 Atomic execution of the reaction

 Logical time

 Well founded

 Liable to formal analysis

Time

Atomic Reaction

I1 I2

O1
O2

Synchronous Hypothesis

• Synchronous languages work on a logical time.

• The time is

– Discrete

– Total ordering of instants.

• A reaction executes in one instant.

• Actions that compose the reaction may be
partially ordered.

Use N as time base

Synchronous Hypothesis

• Communications between actors are also
supposed to be instantaneous.

• All parts of a synchronous model receive
exactly the same information (instantaneous
broadcast).

• Outcome: Outputs are simultaneous with
Inputs (they are said to be synchronous)

• Thanks to these strong hypotheses, program
execution is fully deterministic.

Reactive ?

• Different ways to “react” to the environment:

– Event driven system:

• Receive events

• Answer by sending events

– Data flow system:

• Receive data continuously

• Answer by treating data continuously also

Some systems
have components of
both kinds

Event Driven Reactive
System

landing

open gear door

gear door opened gear down

push down gear block gear

Langing gear management

Data Flow Reactive System
(Example)

sensors

navigation

guidance

piloting

operators

P
e
ri
o
d
ic

 p
ro

ce
ss

u
s

• get measures

• where am I ?

• where go I ?

• command computation

• command to operators

Control/Command vehicle

Imperative and

Declarative languages

• Different ways to express synchronous

programs:

1. Imperative languages rely on implicitly or

explicitly finite state machines, well suited

to design event driven reactive system

2. Declarative languages rely on operator

networks computing data flows, well suited

to design data flow reactive system

11/01/2016 55

Imperative Language

Event driven applications can be designed with an
imperative language (as Esterel)

1. Listen input and output events
2. Specific operators to deal with the logical time

(await)
3. Test of presence or absence of signals (present)
4. Synchronous parallelism (||)
5. Emit to change the environment (emit S)
6. Usual operators (loop, abort when)

Esterel program example

module RUNNER:
Constant NumberOfLaps : integer;
input Morning, Second, Meter, Step, Lap;
output Walk, Jump, Run;

 Program body (next slide)

end module

Esterel program example

sequence

every Morning do
 repeat NumberOfLaps times
 abort
 abort sustain Walk when 100 Meter;
 abort
 every Step do emit Jump end every
 when 15 Second;
 sustain Run
 when Lap
 end repeat
end every

Esterel program = Mealy Machine

module ABRO:
 input A, B, R;
 output O;
 loop
 [await A || await B];
 emit O;
 each R
end module

Data flow = Operator Networks

Data flow programs can be interpreted as
networks of operators.

Data « flow » to operators where they are
consumed. Then, the operators generate new data.
(Data Flow description).

op1

op2

op3

Operator

Token

(data)

Flows, Clocks

• A flow is a pair made of

– A possibly infinite sequence of values of a
given type

– A clock representing a sequence of instants

X:T (x1, x2, … , xn, …)

An example of Data Flow

11/01/2016 62

Data Flow

11/01/2016 63

Data Flow

11/01/2016 64

Data Flow

11/01/2016 65

Data Flow

11/01/2016 66

Data Flow

11/01/2016 67

Data Flow Synchronous Languages

operator Average (X,Y:int) returns (M:int)
M = (X + Y)/2

 X = (X1,X2,….,Xn,…….)

 Y = (Y1,Y2,…..,Yn,……..)
 M = ((X1+Y1)/2, (X2+Y2)/2,……,(Xn+Yn)/2,….)

Average

X:int

Y:int

M:int

Data Flow Synchronous Languages

Memorizing to take the past into account:
1. pre (previous):

 X = (x1,x2,….,xn,……) :
pre(X) = (nil, x1,x2,….,xn,……)
nil undefined value denoting uninitialized
memory

2. → (initialize):
X = (x1,x2,….,xn,……), Y = (y1,y2,….,yn,……) :
X → Y = (x1,y2,….,yn,……)

Sequential examples

n= 0 → pre(n) + 1

operator MinMax (x:int) returns (min,max:int):
min = x→ if (x < pre(min) then x else pre(min)
max = x → if (x > pre(max) then x else pre(max)

x= (3, 4, 5, 2, 7, ….)
min = (3, 3, 3, 2, 2,…)
max = (3, 4, 5, 5, 7,…)

11/01/2016 70

Sequential examples

operator CT (init:int) returns (c:int):
 c = init → pre(c) + 2

operator DoubleCall (even:bool) returns (n:int)

n= if (even) then CT(0) else CT(1)
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ?

11/01/2016 71

Sequential examples

operator CT (init:int) returns (c:int):
 c = init → pre(c) + 2

CT(0) = (0,2,4,6,8,10,12,14,16,18,….)
CT(1) = (1,3,5,7,9,11,13,15,17,19,….)

operator DoubleCall (even:bool) returns (n:int)
n= if (even) then CT(0) else CT(1)

DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ?
 (1,3,4,6,9,11,12,14,17)

11/01/2016 72

Modulo Counter

operator MCounter (incr:bool; modulo : int)
 returns (cpt:int);
 var count : int;

 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

Modulo Counter Clock

operator MCounterClock (incr:bool;
 modulo : int)
 returns(cpt:int;
 modulo_clock: bool);
 var count : int;
 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

modulo_clock = count != cpt;

Modulo Counter Clock

var count : int;
 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;
 modulo_clock = count != cpt;

MCounterClock(true,3):
count: 0 1 2 3 1 2 3……
cpt = 0 1 2 0 1 2 0……..
modulo_clock = ff ff ff tt ff ff tt ….

Timer

operator Timer returns (hour, minute, second:int);
var hour_clock, minute_clock, day_clock : bool;

(second, minute_clock) = MCounterClock(true, 60);
(minute, hour_clock) = MCounterClock(minute_clock,60);
(hour, dummy_clock) = MCounterClock(hour_clock, 24);

Data Flow Programs Compilation

 Data flow programs are compiled into automata

Data Flow Program Compilation

operator WD (set, reset, deadline:bool)
 returns (alarm:bool);
var is_set:bool;
 alarm = is_set and deadline;
 is_set = false -> if set then true
 else if reset then false
 else pre(is_set);
 assert not(set and reset);
tel.

Data Flow Program Compilation

First, the program is translated into pseudo code:
if _init then // first instant (or reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Data Flow Program Compilation

3 states:
S0: _init = true and pre(is_set) = nil
S1: _init = false and pre(is_set) = false
S2: _init = false and pre(is_set) = true

For WD, we consider 2 state variables:
_init (true, false, false, ….) and pre(is_set)

Choose state variables : _init and variables which
have pre.

11/01/2016 80

Data Flow Program Compilation

S1:

 _init := false

 pre(is_set) := false

S0: alarm := false;

initial

11/01/2016 81

if _init then // first instant (or
reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Lustre Program Compilation

S1: if set then

 alarm:= deadline;

 go to S2;

 else

 alarm := false;

 go to S1;

S2:

 _init = false;
 pre(is_set) := true;

S0: alarm := false;

initial

¬set

set

11/01/2016 82

if _init then // first instant (or
reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Lustre Program Compilation

S1: if set then

 alarm:= deadline;

 go to S2;

 else

 alarm := false;

 go to S1;

S2:

 _init = false;
 pre(is_set) := true;

S0: alarm := false;

initial

¬set

set

11/01/2016 83

Lustre Program Compilation

S1: if set then

 alarm:= deadline;

 go to S2;

 else

 alarm := false;

 go to S1;

S2: if set then
 alarm := deadline;
 go to S2;
 else
 if reset then
 alarm := false;
 go to S1;
 else
 alarm := deadline;
 go to S2;

S0: alarm := false;

initial

¬set ¬reset

reset

set

11/01/2016 84

if _init then // first instant (or
reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Lustre Program Compilation

S1: if set then

 alarm:= deadline;

 go to S2;

 else

 alarm := false;

 go to S1;

S2: if set then
 alarm := deadline;
 go to S2;
 else
 if reset then
 alarm := false;
 go to S1;
 else
 alarm := deadline;
 go to S2;

S0: alarm := false;

initial

¬set ¬reset

reset

set

11/01/2016 85

Model Checking Technique

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:
– LTL : liveness properties

– CTL: safety properties

• Algorithm =
– LTL : algorithm exponential wrt the formula size and

linear wrt automata size.

– CTL: algorithm linear wrt formula size and wrt
automata size

 86

Properties Checking

• Liveness Property  :

–   automata B()

– L(B()) =  decidable

–  |= M : L(M  B(~)) = 

Safety Properties

• CTL formula characterization:

– Atomic formulas

– Usual logic operators: not, and, or ()

– Specific temporal operators:

• EX , EF , EG 

• AX , AF , AG 

• EU(1 ,2), AU(1 ,2)

Safety Properties Verification

We call Sat() the set of states where  is true.

 M |=  iff sinit  Sat().

Algorithm:

Sat() = { s |  |= s}

 Sat(not ) = S\Sat()

 Sat(1 or 2) = Sat(1) U Sat(2)

 Sat (EX ) = {s |  t  Sat() , s → t} (Pre Sat())

 Sat (EG ) = gfp ((x) = Sat()  Pre(x))

 Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1)  Pre(x))

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, c a b

a,b,c

c
b,c

EG (a or b) gfp ((x) = Sat(a or b)  Pre(x))

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4})

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4}

({s0, s1, s2, s3,s4}) = {s0, s1, s2, s4}

11/01/2016 90

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, c a b

a,b,c
c b,c

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4})

({s0, s1, s2, s4}) = {s0, s1, s2, s4}

S0 |= EG(a or b)

11/01/2016 91

• Problem: the size of automata

• Solution: symbolic model checking

• Usage of BDD (Binary Decision Diagram)

to encode both automata and formula.

• Each Boolean function has a unique

representation

• Shannon decomposition:
• f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn)

Model Checking

Implementation

11/01/2016 92

Model Checking

Implementation

• When applying recursively Shannon

decomposition on all variables, we obtain

a tree where leaves are either 1 or 0.

• BDD are:

– A concise representation of the Shannon tree

– no useless node (if x then g else g  g)

– Share common sub graphs

11/01/2016 93

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1

x0

x1

y0

y1 y1

y0

y1 y1

x1

y0

y1 y1

y0

y1 y1

0 1

1
11/01/2016 94

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)
x0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1

0

1

1
x1

y0

y1 y1

y0

y1 y1

x1

y0

y1 y1

y0

y1 y1

11/01/2016 95

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)
x0 0 1

x1

y0

y1 y1

0 1 0 1

x1

y0

y1 y1

0

0 1 1 1

0

11/01/2016 96

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)
x0 0 1

x1

y1

0 1

x1

y0

y1 y1

0 1 1 1

0 0

11/01/2016 97

Model Checking

Implementation (2)

x0 0 1
x1

y1

0 1

x1

y0

y1

1 1

0
0

(x1  y1) v (x0  y0  x1)

11/01/2016 98

Model Checking

Implementation (2)

x0 0 1

x1

y1

0 1

x1

y0

1

0
0

(x1  y1) v (x0  y0  x1)

11/01/2016 99

Model Checking

Implementation (2)

x0 0 1

x1

y1

0 1

x1

y0

(x1  y1) v (x0  y0  x1)

11/01/2016 100

Model Checking

Implementation(3)

• Implicit representation of the of states set

and of the transition relation of automata

with BDD.

• BDD allows
• canonical representation

• test of emptiness immediate (bdd =0)

• complementarity immediate (1 = 0)

• union and intersection not immediate

• Pre immediate

11/01/2016 101

 Model Checking

Implementation (4)

• But BDD efficiency depends on the

number of variables

• Other method: SAT-Solver

– Sat-solvers answer the question: given a

propositional formula, is there exist a

valuation of the formula variables such that

this formula holds

– first algorithm (DPLL) exponential (1960)

11/01/2016 102

 Model Checking

Implementation (4)

• SAT-Solver algorithm:

– formula  CNF formula  set of clauses

– heuristics to choose variables

– deduction engine:

• propagation

• specific reduction rule application (unit clause)

• Others reduction rules

– conflict analysis + learning

11/01/2016 103

Model Checking

Implementation (5)

• SAT-Solver usage:

– encoding of the paths of length k by

propositional formulas

– the existence of a path of length k (for a given

k) where a temporal property  is true can be

reduce to the satisfaction of a propositional

formula

– theorem: given  a temporal property and M

a model, then M |=    n such that

M |= n  (n < |S| . 2 ||)

 11/01/2016 104

Bounded Model Checking

• SAT-Solver are used in complement of

implicit (BDD based) methods.

• M |= 

– verify ¬  on all paths of length k (k bounded)

– useful to quickly extract counter examples

11/01/2016 105

Bounded Model Checking

Given a property p
Is there a state reachable in k steps, which
satisfies ¬p ?

p p p p ¬p

s0 s1 s2 Sk-1 sk

……..

11/01/2016 106

Bounded Model Checking

The reachable states in k steps are captured by:
 I(s0) T(s0,s1) ……….. T(sk-1, sk)
The property p fails in one of the k steps

V V V

¬p(s0) V ¬p(s1) V ¬p(s2) …… V ¬p(sk-1) V ¬p(sk)

The safety property p is valid up to step k iff Ω(k) is
unsatisfiable:

Ω(k) = I(s0) (T(si, si+1)) (¬p(si))

v V

i=0

k-1

v

V
i=0

k

11/01/2016 107

Bounded Model Checking

K=0

BMC(M,ρ,k)

k≥ CT

SAT

UnSAT K++

M |= ρ

M |=ρ

CT is the completeness threshold
11/01/2016 108

Bounded Model Checking

• Computing CT is as hard as model checking.

• Idea: Compute an over-approximation to the

actual CT

– Consider the system as a graph.

– Compute CT from structure of the graph.

• Example: for AGρ properties, CT is the

longest shortest path between any two

reachable states, starting from initial state

11/01/2016 109

Model Checking with
Observers

• Express safety properties as observers.

• An observer is a program which observes the
program and outputs ok when the property
holds and failure when its fails

program

observer

inputs outputs

ok
failure

Model Checking with
observers (2)

P: aircraft autopilot and security system

P aircraft_altitude landing_order

 aircraft_altitude

200

landing_order not

alarm

alarm

and

implies


Properties Validation

• Taking into account the environment

– without any assumption on the environment,
proving properties is difficult

– but the environment is indeterminist

• Human presence no predictable

• Fault occurrence

• …

– Solution: use assertion to make hypothesis on the
environment and make it determinist

Properties Validation (2)

• Express safety properties as observers.

• Express constraints about the environment as
assertions.

program

observer

inputs outputs

ok
failure

assertions assume

Properties Validation (3)

• if assume remains true, then ok also
remains true (or failure false).

program

observer

inputs outputs

ok
failure

assertions assume

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to middleware for IoT (~Wcomp)

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous /asynchronous issues

Practical Issues

Application to Middleware for IoT

Practical Issues

11/01/2016 117

•How to maintain consistency in spite of concurrent

accesses by multiple services and multiple

applications to a common Entity of Interest ?

• How to deal with dynamic context changes ?

•Introduce in Middleware specific components

(synchronous components) on which model

checking technique applies

Our challenges are:

Application to Middleware

Devices and
applications

MODELS

proofs

WComp
Bean

automatic code
generation

functional
validation

simulation

Synchronous Models

To sum up :
1. Synchronous models can be designed

as event-driven controllers or as data
flow operator networks

2. They always represent automata
3. Model-checking techniques apply

11/01/2016 119

Application to Adaptive Middleware

• Our goal is to ensure safety for applications
using and managing services.
• Devices will have a synchronous component to
allow model-checking techniques application as
validation
• Synchronous component to express constraints
between concurrent services
• Synchronous parallelism as composition

11/01/2016 120

Use Case

11/01/2016 121

 Entity of interest: temperature controlled room

Use Case

• Use case: manage room temperature

1. Temperature controlled by 2 internet objects: air

condionner and heater

2. Two applications use these devices:

1. APP1: to cool the room

2. APP2: to warm the room

3. Constraints:

 APP1 is launch by Paul smartphone

 APP2 is launch by Pierre smartphone

 The air conditioner and the heater cannot be switch on

simultaneously

• Goal: send the appropriate alarm (strong,

weak or warning)

11/01/2016 122

simultaneous

Use Case Implementation

11/01/2016 123

Use Case Implementation

11/01/2016 124

Se
rvice

 co
n

strain
ts

Application constraints

Use Case Implementation

11/01/2016 125

How specify the Heater synchronous model ?

How specify both device and application constraints as
synchronous models ?

Solution: use a synchronous language

First Solution: SCADE

• Scade (Safety-Critical Application

Development Environment) has been

developed to address safety-critical

embedded application design

• The Scade suite KCG code generator has

been qualified as a development tool

according to DO-178B norm at level A.

11/01/2016 126

SCADE

• Scade has been used to develop, validate

and generate code for:

– avionics:

• Airbus A 341: flight controls

• Airbus A 380: Flight controls, cockpit display, fuel

control, braking, etc,..

• Eurocopter EC-225 : Automatic pilot

• Dassault Aviation F7X: Flight Controls, landing

gear, braking

• Boeing 787: Landing gear, nose wheel steering,

braking
11/01/2016 127

• System Design

– Both data flows and state machines

• Simulation

– Graphical simulation, automatic GUI

integration

• Verification

– Apply observer technique

• Code Generation

– certified C code

SCADE

11/01/2016 128

Modulo Counter

operator MCounter (incr:bool; modulo : int)
 returns (cpt:int);
 var count : int;

 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

Modulo Counter

count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

Modulo Counter Clock

operator MCounterClock (incr:bool;
 modulo : int)
 returns(cpt:int;
 modulo_clock: bool);
 var count : int;
 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

modulo_clock = count <> cpt;

Modulo Counter Clock

Timer

operator Timer returns (hour, minute, second:int);
var hour_clock, minute_clock, day_clock : bool;

 (second, minute_clock) = MCounterClock(true, 60);
 (minute, hour_clock) =
 MCounterClock(minute_clock,60);
 (hour, dummy_clock) =
 MCounterClock(hour_clock, 24);

Timer

SCADE: state machines

• Input and output: same interface

• States:

– Possible hierarchy

– Start in the initial state

– Content = application behavior

• Transitions:

– From a state to another one

– Triggered by a Boolean condition

11/01/2016 135

SCADE: state machines

state

transition

trigger

When ON, ison = true

When off, ison = false
11/01/2016 136

SCADE: model checking

Observer technique

posture model

posture model
specification in scade

11/01/2016 137

SCADE: model checking

Observer technique

posture
observer

posture verification

valid

assume (lying # sitting # standing)

11/01/2016 138

SCADE: code generation

• KCG generates certifiable code (DO-178

compliance)

• Clean code, rigid structure (possible

integration)

• Interfacing potential with user-defined

code (c/c++)

11/01/2016 139

CLEM versus SCADE

• SCADE suite:

– Complex design environment

– C code not embedded into C# bean easily

– closed compilation environment

• Solution: use CLEM toolkit to specify and

verify synchronous monitor before

integration:

– own compilation means

– C# code generation
11/01/2016 140

CLEM ISSUE

11/01/2016 141

CLEM is a toolkit around the
LE synchronous language
offering:

• Modular compilation
• Simulation
• Verification
• Code generation for

hardware and
software targets (C#)

LE Language

• LE synchronous language

– Textual imperative language (~ Esterel)

• Usual synchronous languages operators:

– || ; abort ; strong abort; sequence (>>); present; loop; emit

– wait pause

• run to call external module

– Explicit Mealy machine (automata designed with

Galaxy)

– Implicit Mealy machine (~data flow)

11/01/2016 142

LE Language

module Parallel:

Input:I;

Output: O1, O2,O3;

 emit O1

||

 wait I >> emit O2

||

 emit O3

end

11/01/2016 143

LE Language

module Parallel:

Input:I;

Output: O1, O2,O3;
Mealy Machine

Register:

X0: 0: X0next;

X1: 0 : X1next;

X0next = X0 and not X1;

X1next = X0 and X1 or not X1 and I

 or not X0 and X1;

O1 = not X0 and not X1;

O2 = X0 and not X1 and I;

O3 = not X0 and not X1;

11/01/2016 144

LE Compilation

• Compilation into implicit Mealy machines (Boolean

equation systems with registers)

• Compilation ⇒ sort equation systems

• Challenge: modular compilation ?

– ⇒ face causality problem

– causality = no evaluation cycle in equation systems

– total order prevents modularity

– issue: compute partial orders

11/01/2016 145

LE Compilation

11/01/2016 146

O2= I2
O1 = I1

O3 = I3
L1 = I
O = L2
L2 = L1

L1 = I
O = L2
L2 = L1

LE Compilation

• Sorting algorithms:

1. Apply CPM on dependency graphs of equation

systems to compute ranges of evaluation levels for

variables (efficient)

2. apply fix point theory:

• Compute variable evaluation levels as fix point of a monotonic

increasing function

• Uniqueness of fixpoints we can consider a global sorting as

well as a local and separate sorting

11/01/2016 147

CLEM Simulation and

Verification

• Simulation:

– Based on either blif_simul an interpretor for blif code

generated by CLEM or cles a lec code interpretor

• Verification:

1. NuSMV model checker (code generated)

2. blif_check for small application

11/01/2016 148

Synchronous Component
Design with CLEM

Synchronous modeling

Explicit Mealy machine
designed with Galaxy

or
Implicit Mealy machine

designed as Boolean
equations in Clem

O1 = i1
and i2……

Automata

Bool. equations

Constraints

Solution:Constraint

Component

11/01/2016 150

APP

Constraint Component

Room
Temperature

(Entity Of
Interest)

APP

||
Constraint

Controlller

Solution: Constraint

Component

11/01/2016 151

New constraint
controller

APP

Air

Conditioner APP

Heater

||
Constraint

Controlller

New Constraint Component

Old Constraint Component

|| fan

||

Inhibitor (OFF)

Room
Temperature

(Entity Of
Interest)

Dynamicity: Appearance of a new device

Solution: Constraint

Component

11/01/2016 152

Room
Temperature

(Entity Of
Interest)

APP

Air

Conditione

r
APP

Heater

fan

APP

New constraint
controller

||

Constraint

Controlller

New Constraint Component

Old Constraint Component

||

Scheduler

Dynamicity: Appearance of a new Application

Solution: Constraint

Component

11/01/2016 153

New constraint
controller

APP

Air

Conditioner APP

Heater

||
Constraint

Controlller

New Constraint Component

Old Constraint Component

|| fan

||

Inhibitor (On)

Room
Temperature

(Entity Of
Interest)

Dynamicity: Disappearance of a device

X

Solution: Constraint

Component

11/01/2016 154

New constraint
controller

APP

Air

Conditioner
APP

1

Heater

||
Constraint

Controlller

New Constraint Component

Old Constraint Component

|| fan

||

Inhibitor (On)

Room
Temperature

(Entity Of
Interest)

Dynamicity: Disappearance of an application

X

Application

manager

Constraint Controller

Design

11/01/2016 155

Air

Conditioner

Constraint Component

DCL
=

Description
Constraint
Language

Heater

|| Constraint

Controlller

TypeDevice:
AirConditioner : n, Heater : m;

Constraints:
AirConditioner:is_on = Or i in [0..n-1]
device[i].is_on and Forall j in [n..n+m-1]
(device[j].is_off) ;

AirConditioner:is_off = And i in [0..n]
device[i].is_off ;

Heater:is_on = Or i in [n..n+m-1]
device[i].is_on and Forall j in [0..n-
1](device[j].is_off) ;

Heater:is_off = And i in [n..n+m-1]
device[i].is_off ;

Automatic generation of the constraint controller ?

Description Constraint

Language

11/01/2016 156

Need of only application and device types

Generic constraints description to manage

multiple accesses

Generation of CLEM implicit Mealy machines

describing constraint controller behaviors

Dealing with dynamic environments changes :

appearance and disappearance of

applications/devices.

 Validation with CLEM

validated

component

C

C

C

Generate

C# Bean

LE

design
simulation Validatation

Application to WComp

11/01/2016 158

||| Constraint

Controlller

||

||

automatic generation

C# beans

validation

Use Case Issue in CLEM

11/01/2016 159

air_cond_swith_on = switch_on ; air_condi_switch off = switch_off

air_cond_is_on = is_on ;air_cond_is_off = is_off

heater_swith_on = switch_on ; air_heater_switch off = switch_off

heater_is_on = is_on ; heater_is_off = is_off

G
alaxy

G
alaxy

air_cond

heater

Use Case in CLEM

11/01/2016 160

APP

Constraint Component

Room
Temperature

(Entity Of
Interest)

APP

||
Constraint

Controlller

air_cond_switch_on, air_cond_switch_off

heater_switch_on, heater_switch_off

air_cond_inhib

heater_inhib

air_cond_is_on, air_cond_is_off

heater_is_on, heater_is_off

is_on

is_off

Use Case in CLEM

11/01/2016 161

Constraint

Controlller

Mealy
machine

air_cond_is_on, air_cond_is_off

heater_is_on, heater_is_off

air_cond_inhib, heater_inhib

is_on

is_off

module ConstraintController :
 Input: air_cond_is_on, air_cond_is_off,
 heater_is_on, heater_is_off,
 air_cond_inhib, heater_inhib;
 Output: is_on, is_off;
 local ac_is_on, ac_is_off, h_is_on, h_is_off
{
 Mealy machine:
 ac_is_on = air_cond_is_on and not air_cond_inhib;
 ac_is_off = air_cond_is_off anf not air_cond_inhib;
 h_is_off = heater_is_off and not heater_inhib;
 h_is_off = heater_is_off and not heater_inhib;

 is_on = (ac_is_on and not h_is_on) or
 (h_is_on and not ac_is_on);
 is_off = h_is_off and ac_is_off;
}
end

Use Case in CLEM

11/01/2016 162

module ConstraintComponent:
 Input: air_cond_switch_on, air_cond_switch_off, air_cond_inhib, heater_switch_on,
 heater_switch_off, heater_inhib;
 Output: is_on, is_off;
 local air_cond_is_on, air_cond_is_off, heater_is_on, heater_is_off
{
 run AC_H_model[air_cond_switch_on\ switch_on, air_cond_switch_off\switch_off,
 air_cond_is_on\is_on, air_cond_is_off\is_off]
||
 run AC_H_model[heater_switch_on\switch_on, heater_switch_off\switch_off,
 heater_is_on\is_on, heater_is_off\is_off]
||
 run ConstraintController
}
end

C# Bean Generation

11/01/2016 163

LE

Constraint

Component

Validation (CLEM blif_check):
air_cond_switch_on and heater_switch_off =>

is_on

air_cond_inhib and heater_inhib => not is_on

C# Bean Generation

run automaton

reset automaton

C# Bean Integration

• C# Bean implements synchronous component in

Wcomp

• Communication is asynchronous in WComp

• ⇒

– need of a synchronizer to collect asynchronous events

and build the logical event for the synchronous monitor

– need for the reverse operation to plunge the outputs of

the instant into asynchronous events

11/01/2016 164

C# Bean Generation

11/01/2016 165

S
y
n

c
h

ro
n

iz
a
ti

o
n

U
n

-s
y
n

c
h

ro
n

iz
a
tio

n

Synchronous
monitor

asynchronous data synchronous data

C#

Bean

Controlled

room

Asynchrony/Synchrony

• Synchronization goal:

1. generate the set of synchronous input events that

characterizes the synchronous logical instant.

2. Define an exchange format to allow communication

between synchronous monitors and asynchronous

components

• Un-synchronization goal:

1. Generate the set of asynchronous output events from

synchronous output events computed by the

synchronous component.

 11/01/2016 166

Asynchrony/Synchrony

• How define the logical instant ?

– The synchronization phase should be generic and allow

to take into account several types of devices.

– Introduction of a generic structure to represent events

coming from different sensors:

• name, presence, value type, value, elapsed time

• apply several sampling policies : elapsed time, occurrence,

average

11/01/2016 167

Asynchrony/Synchrony

• How define the logical instant ?

11/01/2016 168

evt evt
Sampling
policies

Synchronous instant

Asynchrony/Synchrony

• Exchange format to get a means to establish

communication between input methods and output

events in Wcomp.

• ⇒ Serialization/Deserialization of events. Two

serialization proposals:

1. “ [<name> = <occurrence>,[<type>, <valeur>]?;]+”

• a = false; b = true; v = true, int, 7;”

2. [“<name>”<occurrence> <type> <valeur>”]+

• “a false” “b true” “v true int 7”

11/01/2016 169

Asynchrony/Synchrony

11/01/2016 170

Event buffer
(sampling policies)

serialization

Events

“event string”

Un-serialization

Run automaton
Reset automaton

Outputs

serialization

Synchronous component

Input generator

Asynchrony/Synchrony

11/01/2016 171

Un-serialization

Run automaton
Reset automaton

Outputs

serialization

Synchronous component

Un-serialization

(string ⇾ events)

Sending Policies

Ouputs generator

Asynchronous events

