
Lecture 3 :
Component based middleware and

ubiquitous computing

Ass. Prof. Jean-Yves Tigli

tigli@polytech.unice.fr

www.tigli.fr
Ref : Component-based

Software Engineering

Ivica Crnkovic

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI

Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr
1

mailto:tigli@polytech.unice.fr
http://www.tigli.fr/

Overview

• Introduction

• ACME Architectural Description Language

• Java Bean Component Model

• COM, DCOM, MTS and COM+

• CORBA Component Model (CCM)

• .NET Component Model

• OSGI Component Model

• WComp Component Model, for ubiquituous computing

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI

Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr
2

What is a Component?

• “A software component is a software element that conforms
to a component model, and can be independently deployed
and composed without modification according to a
composition standard.”

[1],[2]

What is a Component?-cont..

• Component Model

– Interaction Standards
• Clearly Defined Interface

– Composition Standards
• Describe how components can be composed into larger structures

• Substitutions

• Example: COM

CBSE Definition

• Developing new software from pre-built components.

• Attempt to make an association between SE and other
engineering disciplines.

Advantages of CBSE

• Management of Complexity

• Reduce Development Time

• Increased Productivity

• Improved Quality

[3]

Disadvantages of CBSE

• Development of Components

• Lack of Components

• Component Maintenance Costs

• Sensitivity to changes

• Trust

[3]

More on Trust

• Components come in several forms

– Binary

– Source Code

• Need a Certification Standard

– Tests

– Environments

CBSE vs. Traditional SE

• CBSE views the system as a set of off-the-shelf components
integrated within an appropriate architecture.

• SE seeks to create a system from scratch.

CBSE vs. Traditional SE-cont..

• CBSE Life Cycle is
shorter.

• CBSE develops

 Architecture.

• CBSE is less

 expensive

[3]

CBSE Waterfall

Find

Select

Requirements

Design

Adapt

Test

Deploy

Implementation

Test

Release

Replace Maintenance

CBSE vs. Traditional SE-cont..

CBSE vs. Traditional SE-cont..

• SE can fulfill requirements more easily.

• CBSE fulfillment of requirements is based on the available
components.

Consequences of CBSE

• Promote Large Scale Reuse

• Reduce Cost

Architecture Definition
Languages

• ADLs primarily address the issues related to the early phases
of software engineering
– Design

– Analysis

• They identify a number of concepts, such as:
– Architecture, configurations, connectors, bindings, properties,

hierarchical models, style, static analysis and behavior.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

14

ACME Architectural Description
Language

• Components and Ports

• Connectors and Roles

• Systems and Attachments

• Representations and Bindings

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

15

Components and Ports

• Components
– Represent the computational elements and data stores of a system.

• Ports
– Are the points of interaction between a component and its

environment.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

16

Connectors and Roles

• Connectors
– Represent interactions between components such as method calls or

an SQL connection between a client and a database server.

• The interface of a connector is defined as a set of roles

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

17

Systems and Attachments

• The structure of a system is specified by a set of components,
a set of connectors, and a set of attachments.

• Attachment
– Links a component port to a connector role.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

18

Representations and Bindings

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

19

Fine-grained Component
JavaBean Model and Key Features

• "A Java Bean is a reusable software component that can be
manipulated visually in a builder tool ”.

• The Java Bean was designed for the construction of graphical
user interface (GUI).

• Explicitly tailored to interact in two different contexts:
– At composition time, within the builder tool.

– At execution time, with the runtime environment.

• Any Java class that adheres to certain conventions regarding
property and event interface definitions can be a JavaBean.

• Beans are Java classes that can be manipulated in a visual
builder tool and composed into applications.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI

Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr
20

Interface of a Component

• This model defines four types of port:
– methods,

– properties,

– event sources (generate an event)

– event sinks called listeners (they receive event)

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

21

Implementation of a
Component

• Most bean components are implemented by a simple Java
object by naming convention

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

22

Components Assembly

• Assembly is one of the key features of Java Bean though no
not specific solution is provided.
– Composition tools (Bean Box)

– No composition language

• Different ways of assembling components are supplied.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

23

Packaging and Deployment

• Java Beans define a model for packaging components into
archives.
– Includes the definition of dependency relationships between the

package items.

• Each package item can be marked "Design Only", so that they
can be removed in a final application.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

24

Coarse grained Component
.NET Model – Implementation

• A component (assembly) is made of modules, which are
traditional executable files (DLL).

• Modules cannot be assemblies, thus the .NET model is not
hierarchical.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

25

Framework : The Container
Approach

• Framework – a set of containers. Containers contains
components and provides a set of standard services (security,
events, persistence, life -cycle support)

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

26

Framework

• NET relies on the traditional programming approach : the
framework is seen as the language run-time support.
– MISL – Microsoft Intermediate language (similar to Java Byte code)

– Common Runtime Language (similar to Java Virtual Machine)

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

27

Lifecycle

• Assemblies (and their modules) are local to an application,
and thus different DLLs with same name can run
simultaneously.

• Each assembly has a versioning information about itself and
about the assemblies it depends on.
– Version control is delegated to the dynamic loader, which selects the

“right” version.

• Significantly improve the application packaging and
deployment.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

28

Other component model
OSGI Component Model

• Components

• Interface of a Bundle Component

• Assembly of Bundle Components

• Implementation of a Bundle Component

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

29

Components

• A bundle use three kinds of ports to express its interactions
with
– Traditional technology

– Other components

– The run-time environment

• Bundles may listen to events published by the framework
such as the insertion of a new component in a system.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

30

Interface of a Bundle
Component

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

31

Assembly of Bundle
Components

• A system is an evolving set of bundle components.

• A bundle component publishes a service interface
– It can attach to it a set of properties describing its characteristics.

• A component requires an interface for its use,
– It will select one via a query expression based on these properties.

• This flexibility also has its counterpart
– There is no guarantee than the service will continue to be available

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

32

Implementation of a Bundle
Component

• JAR archive containing:
– Service components

– Java packages

– Other resources files

• Double dependency
– Through packages

– Through interfaces

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

33

WComp and LCA to orchestrate
services for Devices

• LCA create service-based orchestration for a specific task

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

34 / 63

Environment

Device

Infrastructure

Services from the

 infrastructure

Service orchestration,

application

WComp and Local Composition
(LCA)

• Main requirements for ubiquituous computing :

– Composition must be event based

– At runtime ….

• Solution :

– Event based Local Composition : LCA (Lightweight
Component Model) for each application execution node.

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

35 / 63

Main Features of LCA Model :

• Goal :
– Allow to compose Services for Device between them towards a

multiple devices ubiquitous application.

• Principles
– LightWeight Components Approach :

• Like OpenCom, JavaBeans, PicoContainer

– On the same execution node

– For each execution node, a container dynamically manage the
assembly of components

– Event-based interaction between components

– Blackbox LightWeight Components

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI

Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr
36

LCA, Bean WComp and ports

• Demo

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

37

Property

Method

Event source

BeanWComp .Net template

using System;

using System.ComponentModel;

using WComp.Beans;

namespace Bean4

{

 /// <summary>

 /// Description rsume de Class1.

 /// </summary>

 [Bean(Category="MyCategory")]

 public class Class1

 {

// delegate implicite de void EventHandler(object sender, EventArgs e)

public event EventHandler MyEvent;

// graphiquement ce qui sera fait :

// MyEvent += new EventHandler(func)

// avec private void func(object sender, EventArgs e)

17/01/2012 Rainbow - Jean-Yves Tigli - Stephane Lavirotte - <prenom>.<nom>@unice.fr 38

• Events are based on « delegate » model (in C#)

Event

Category

BeanWComp .Net template

…

// Nom de la propriété avec minuscule

// variable de sauvegarde propriété

 protected int myprop = 1;

 //meta donnée : valeur par défaut propriété

 [DefaultValue(1)]

// déclaration propriété : public <type> Nom

 public int Myprop

 {

 get

 {

 return myprop;

 }

 set

 {

 if (myprop < 1)

 {

 throw new ArgumentException("positif !");

 }

 // mot clef value

 myprop = value;

 }

 }

…

17/01/2012 Rainbow - Jean-Yves Tigli - Stephane Lavirotte - <prenom>.<nom>@unice.fr 39

• Propriétés

Property

BeanWComp .Net template

// méthodes

 public void MyStep(int val1, int val2)

 {

 if (myprop >= max)

 {

 myprop=1;

 MyEvent(this, null);

 }

 else

 myprop++;

 }

17/01/2012 Rainbow - Jean-Yves Tigli - Stephane Lavirotte - <prenom>.<nom>@unice.fr 40

• Méthodes

Method

LCA, connectors

• Demo

• (Generated source code)

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

41

simple

complex

Connectors

Simple Event based Connector

C1.Event (param)  C2.Method (param)

Complex Event based Connector

C1.Event (param)  C2.Method (C1.GetAProperty())

LCA Proxy components to
access to Services for Devices

Service for Device

Proxy Component

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

42

• Demo

ANNEX DELEGATES AND EVENTS IN
C#

CNS 3260

C# .NET Software Development

2011-2012 MIDDLEWARE FOR UBIQUITOUS COMPUTING – SI5 IAM - MASTER UBINET/IFI
Jean-Yves tigli - tigli@polytech.unice.fr - www.tigli.fr

43

Delegate types

• A delegate declaration defines a new type

• Delegates are similar to function pointers

• Delegate types are derived from System.MulticastDelegate

C# Delegates and Events

The Command Pattern

C# Delegates and Events

Exposed Command Variable Command object instance

Command executor

Command Class
Execute()

Command issuer

Command Subclass
Execute()

Knows when the event
happens but doesn’t
know what to do about
it

Knows what to do
when an event
happens but doesn’t
know when

Simple Delegate Command
Pattern

C# Delegates and Events

Delegate Host Class
(Publisher)

Exposed Delegate

Knows when the event
happens but doesn’t
know what to do about
it

Delegate User Class
(Subscriber)

Knows what to do
when an event
happens but doesn’t
know when

Subscribing Method

AKA: The Observer Pattern or .NET Event Model

Two reasons to use Delegates

• When you’re not sure what should happen when an event
occurs
– GUI events

– Threading situations

– Callbacks

– Command Pattern

• To keep your interface clean
– Looser coupling

C# Delegates and Events

Defining and using Delegates

• three steps:
– Declaration

– Instantiation

– Invocation

C# Delegates and Events

Delegate Declaration

• namespace some_namespace

• {

• delegate void MyDelegate(int x, int y);

C# Delegates and Events

Delegate Type Name

Delegate Instantiation

delegate void MyDelegate(int x, int y);

class MyClass

{

 private MyDelegate myDelegate = new MyDelegate(SomeFun);

 public static void SomeFun(int dx, int dy)

 {

 }

}

C# Delegates and Events

Invocation Method

Invocation Method
name (no params
or perens)

Delegate-Method Compatibility

• A Method is compatible with a Delegate if
– They have the same parameters

– They have the same return type

C# Delegates and Events

Delegate Invocation

C# Delegates and Events

class MyClass

{

 private MyDelegate myDelegate;

 public MyClass(MyDelegate myDelegate)

 {

 this.MyDelegate = myDelegate;

 }

 private void WorkerMethod()

 {

 int x = 500, y = 1450;

 if(myDelegate != null)

 myDelegate(x, y);

 }

}

Attempting to invoke a delegate instance whose value is null results in an exception of type
System.NullReferenceException.

Delegate’s “Multicast” Nature

• Delegate is really an array of function pointers

• Now when Invoked, mc.MyDelegate will execute all three
Methods

• Notice that you don’t have to instantiate the delegate before
using +=
– The compiler does it for you when calling +=

C# Delegates and Events

mc.MyDelegate += new MyDelegate(mc.Method1);

mc.MyDelegate += new MyDelegate(mc.Method2);

mc.MyDelegate = mc.MyDelegate + new MyDelegate(mc.Method3);

The Invocation List

• Methods are executed in the order they are added

• Add methods with + and +=

• Remove methods with - and -=
– Attempting to remove a method that does not exist is not an error

• Return value is whatever the last method returns

• A delegate may be present in the invocation list more than
once
– The delegate is executed as many times as it appears (in the

appropriate order)

– Removing a delegate that is present more than once removes only the
last occurrence

C# Delegates and Events

Multicast example

C# Delegates and Events

mc.MyDelegate = new MyDelegate(mc.Method1);

mc.MyDelegate += new MyDelegate(mc.Method2);

mc.MyDelegate = mc.MyDelegate + new MyDelegate(mc.Method3);

// The call to:

mc.MyDelegate(0, 0);

// executes:

// mc.Method1

// mc.Method2

// mc.Method3 (See Delegates Demo)

Events

• Events are “safe” delegates
– But they are delegates

• Restricts use of the delegate (event) to the target of a += or -=
operation
– No assignment

– No invocation

– No access of delegate members (like GetInvocation List)

• Allow for their own Exposure
– Event Accessors

C# Delegates and Events

Event Accessors

C# Delegates and Events

public delegate void FireThisEvent();

class MyEventWrapper

{

 private event FireThisEvent fireThisEvent;

 public void OnSomethingHappens()

 {

 if(fireThisEvent != null)

 fireThisEvent();

 }

 public event FireThisEvent FireThisEvent

 {

 add { fireThisEvent += value; }

 remove { fireThisEvent -= value; }

 }

}

add and remove
keywords

(See Event Demo)

Library Delegates

• ThreadStart

• TimerCallback

• ASyncCallback

• EventHandler

• KeyPressEventHandler

• KeyEventHandler

• etc.

C# Delegates and Events

References

• [1] Council, William T. and Heineman, George T., “Component-Based Software
Engineering.” Addison-Wesley: Upper Saddle River, 2001.

• [2] Pour, Gilda, “Component-Based Software Development approach: New Oppurtunities
and Challenges,” Proceedings of the 26th International Conference on Technology of Object-
Oriented Languages and Systems, 1998.

• [3] Crnkovic, Ivica, “Component-based Software Engineering – New Challenges in Software
Development,” in 27th Int. Conf. Information Technology Interfaces 2003, June 1-19, 2003,
Cavtat, Croatia.

• [4] Way, Ju An, “Towards Component-Based Software Engineering,” Proceedings of the eighth
annual consortium on Computing in Small Colleges Rocky Mountain conference, pg. 177-189,
Orem, Utah, 2000.

• [5] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, M. Riveill, “Lightweight Service Oriented
Architecture for Pervasive Computing” IJCSI International Journal of Computer Science Issues,
Vol. 4, No. 1, September 2009, ISSN (Online): 1694-0784, ISSN (Print): 1694-0814

