
Decoupling Context-aware Services
Søren Debois

IT University of Copenhagen
debois@itu.dk

Arne John Glenstrup
IT University of Copenhagen

panic@itu.dk

Francesco Zanitti
IT University of Copenhagen

frza@itu.dk

Abstract—We present a novel software architecture for context-
aware applications based on a distributed, non-monolithic, simple
and extensible relational model for representing context; a
service-oriented architecture for computing these relations in a
decoupled, flexible fashion; and with data driven, event based
communication providing the kind of fine grained dynamic
service composition required in mobile and volatile environments.
A prototype implementation is running a Bluetooth–sensor-based
active map of users at our home university.

I. INTRODUCTION

In this paper, we introduce a novel software architecture
for context-aware services. Within the last 18 years, the
construction of software architectures for context aware ap-
plications has been a hot topic [1], [2], [3]; context-aware
services joined the fray within the last five [4], [5]. The
architecture we propose (cf. Figure 2) has the same aims as
many of these works: it seeks to promote code reusability
by encouraging compositionality of system design. It distin-
guishes itself from these other approaches principally by being
data-driven: Services are composed not by specifying which
services invoke which other services, but rather by specifying
which services need what context information. For example,
three different services might provide the same kind of location
data: one based on Bluetooth (BT), one on WiFi, and one on
GPS. Services consuming this location data need not concern
themselves with the origin of that location data, only the data
itself.

This data-driven composition mechanism is of course not
in itself novel; other architectures have separated context data
from its computation. The novelty here is that we make a
very fine-grained division of the computation of context into
such decoupled services. As a consequence we get (a) very
fine-grained re-usability of code: very small computations can
be meaningfully re-used; and (b) a very neat mechanism for
sensor-subsystem switch-over, as alluded to above.

Our architecture is intended for the scenario where a large
area, say, a shopping mall, an airport, a train station, or
a supermarket is equipped with physical sensors, such as
temperature or location sensor, tracking the whereabouts of
customers. The tracking could be based on the clients’ mobile
devices, RFID equipped shopping carts, or other positioning
technologies provided by the merchants.

This work funded in part by the Danish Research Agency (grant no.: 2106-
080046) and the IT University of Copenhagen (the Jingling Genies projects).
Authors are listed alphabetically by last name.

A key point is that our architecture is flexible and extensible
in the sense that several different merchants can deploy each
their system, perhaps relying on different technologies, yet
still allowing the context sensitive applications to operate
seamlessly.

While this scenario is not new [6], it is recently of renewed
interest: it is finally happening outside the laboratory. The
advent of the ubiquitous hand-held mobile phone with BT,
GPS, WiFi or RFID provides a cheap, non-intrusive means of
zone-based tracking of individuals in public spaces [7], [8],
[9], [10], just to mention some location tracking technologies.
At the same time, institutions such as airports, train stations,
supermarkets etc. are beginning to deploy the necessary in-
frastructure for context aware systems: tracking equipment
installed to find customer movement patterns [11], [12], [13]
conveniently doubles as a source of location information for
context aware services.

Such environments—airports, supermarkets, etc.—are asso-
ciated with particular activities, and knowledge about these
activities is a source of context information different from
physical, sensor-obtained data. This knowledge is stored in
databases, relating, e.g., passengers with flights, flights with
departure times and gates, etc. Examples of activities providing
context information are people going to airports to take planes
and to supermarkets to buy groceries.

In most cases the expected activity of users is to a degree
predictable from existing databases. In airports, the activities
are almost fully formalised: a database somewhere knows
passengers’ names, passports and flight numbers, as well as
plane departure times, gate numbers, etc. In supermarkets, a
database somewhere knows exactly what goods are available
in the supermarket, where they are, and how fast those goods
usually disappear in the course of a normal business day. If a
supermarket in question has a frequent-shopper program, some
database somewhere might also have a very precise idea about
what particular individual shoppers tend to buy.

Thus, the present architecture targets a scenario where
context awareness is based both on physical sensors and some
well-defined activities we may get from existing databases—a
scenario in fact being realized commercially right now.

The architecture proposed in the present paper is not only
proposed, it is in fact implemented and available for down-
load [14]. A prototype active map tracking people at our
university is also available online [15].

8th IEEE Workshop on Context Modeling and Reasoning

978-1-61284-936-2/11/$26.00 ©2011 IEEE 415

II. CONTEXT-AWARE SERVICES

We contend uncontroversially that the central challenge of
context-aware computation consists of computing the actual
context from whatever data is available. Software architectures
for context-awareness distinguish themselves primarily by
what way they assist that computation.

It’s important to note that for even the simplest of examples,
such computation is non-trivial. To be concrete, suppose a
context-aware application needs to know whether some pas-
senger in an airport has passed through security. This is a
simple boolean piece of information, obtainable by simply
inspecting the current location of the passenger in question.
Even so, in even the most naive of implementations, this
computation will typically require (at least) two steps. First,
the information that the device with MAC-id 0x2198f172 is
currently in range of sensor 0x31 must be converted to the
information that passenger Jones is in the Lufthansa First Class
Lounge. Second, we must check whether this Lounge is in fact
situated before or after security.

The opportunity for code re-use in the development of
context-aware applications stems from the observation that
within a given application domain—say, a specific airport—
some of these computations will be almost universally useful.
In the above example, the ability to map particular sensor in-
puts to particular passenger’s high-level location would likely
have such usefulness. In fact, also the information whether or
not a passenger has passed security is conceivably interesting
to variety of applications, even if it is not universally useful.

As usual for Software Oriented Architecture (SOA), we
consider a context-aware service to be something which
implements a reusable, distinct computation of context. The
application in the above example then uses two services: one
for the low-level sensor-to-passenger mapping, and one for the
high-level location-to-security-state mapping.

However, put this way, there is no discernible difference be-
tween a context aware service and a context aware procedure.
To maximise the potential reuse of context-aware services, we
shall further decouple them in the following section.

III. CONTEXT-AWARE SERVICE INTERFACES

Let us call the mapping of low-level sensor-data to high-
level location L, and the mapping of high-level location
to security state H . Suppose that the low-level sensors it
interfaces with is the Ekahau WiFi-positioning system [7]. In
places where WiFi is not available, the airport can augment the
location tracking with a BT-based positioning system. How do
we modify the existing context-aware application to use also
the new BT-based tracking system?

By use of the service H , the remainder of the application
is already shielded from this change. But what should happen
to H and L themselves? In a procedural world, H and L
would be tightly coupled. For H to also accommodate the
new location system we must implement a service L′ taking
BT-based positions to high-level locations, and we would have
to modify H so that it always queried both L and L′.

But there is a better way! We know that the service H is
only interested in high-level locations. It is not interested in
other services. There is no need for H to know where its high-
level location information comes from; whether it be L, L′ or
some third entity is absolutely irrelevant to H .

Thus we propose that services be further decoupled so
that the composition is not formed by one service directly
accessing another service, but rather by one service requiring
particular data, no matter who provides it. In composition, the
relevant identifier for a data-stream from a service is no longer
its name, but rather the particular kind of data it produces and
consumes.

However, this definition leaves us with a practical problem:
how does a service specify the particular kind of data it
produces or consumes?

IV. RELATIONAL CONTEXT MODELS & RELATION
TRANSFORMERS

Describing what context-data is produced is of course a mat-
ter of selecting a context meta-model. Fortunately, the problem
of describing classes of context models, of constructing a
context meta-model, is by now fairly well studied, and has
produced suggestions using various techniques, ranging from
tuple-space [2] and object-orientation [4] to ontology-based
[16], and even combinations (e.g. OO with ontology [17]).

The great strength of ontologies is that they come with
description logics as declarative languages for specifying how
context computation is done. However, the ontological meta-
model invites a centralized approach, with one centralized
database and reasoning engine. This centralization is inher-
ently at odds with the breaking down of the computation into
small, re-usable pieces that we are looking for.

However, we salvage the key abstraction from ontology-
based context-models: at its core, an ontology defines how
objects are related. So perhaps to describe context, it is
sufficient to agree on the meaning of some set of relations?
It seems so; any data relevant to context-aware applications
would seem to immediately fit the relational model. For the
above example, an ekahau relation relates WiFi MACs and
sensor ID’s; in particular, one data point could be

ekahau [wifimac=0x2198f172, wifisensor=0x31].
A different relation would indicate the high-level locations:

loc [passenger=Jones, area=”Lufthansa First
Class Lounge”]

Similarly, a relation relating BT MAC-addresses to other BT
MAC-addresses might represent the information about which
mobile phones are currently being detected by which BT
sensor. A relation relating passenger names to flight numbers
might represent the information about which passengers are
booked on which flights. A relation relating flights, gate
numbers and departure times might represent information
about which flights are scheduled to depart from which gates
and at which times, etc.

Incidentally, notice that the meta-model of relation is ac-
tually that of relational databases. This observation should, at

416

least on an intuitive level, justify our expectation that whatever
context we wish to describe, it should be expressible in this
relational model.

So, the interface of a service is the type of relations it
consumes and produces. Both of the services L, L′ produce
the loc relation; the service H consumes that relation.

Do notice the pleasing abstractions here: the context is
represented as some set of relations; computation on context is
then essentially a function on relations, what we might think
of as a relation transformer. The entire computation of high-
level context from low-level context is performed by letting
some set of such relation transformers interact.

V. DATA DRIVEN EVENT BASED COMMUNICATION

At this point, the only remaining key idea of our architecture
is the mechanism needed to connect services wishing to
communicate on some relation, e.g., to connect the loc relation
output of L, L′ to the loc relation input of H . The archi-
tecture supports a basic push-based event publish-subscribe
mechanism, on top of which other interaction patterns can be
constructed if needed.

The routing of events is completely data-driven; a service
subscribes to observe changes in a relation, and any events
emitted changing the state of that relation are routed to the
service. For instance, to subscribe to all changes in the ekahau
relation, a service issues a subscription (pseudocode):

subscribe ekahau [wifimac=?, wifisensor=?]
To monitor only a specific area, the service fixes a value in
the subscription:

subscribe ekahau [wifimac=?, wifisensor=0x31]
A subscription will not by itself make events appear; that

requires services publishing that event. It is, however, accept-
able for a service to subscribe to events not currently being
published by anyone—they might appear later.

VI. ARCHITECTURE SUMMARY

To summarize, in our architecture, the computation of what
is the current context is broken down into units of computation
called services. Services consume small parts of the context-
information and produce in turn new small parts. The parts
themselves are represented as relations, and services never
communicate directly: rather, they indicate their interest in
particular relations. Notice that a service needs to know only
the relations it is interested in; this makes fairly easy to add,
remove and change services.There is no central place hosting
the definition of context. This definition is itself dynamic, and
changes with the available services. Actual communication
between services rely on an event-distribution mechanism, on
top of which one can build query-mechanisms. The interface
between the services and the event-distribution sub-system is
listed in the example listed in Table I (pseudocode, refer to
[14] for actual interface).

We emphasize that in this architecture there is no centralized
representation of the current context. The architecture only
forces representation of a part of the context the instant that

part must be transmitted as an update to a relation from
one service to another. This is the only situation in which
the architecture requires explicit representation of the context
being manipulated. Individual services are of course free to
preserve as much or as little of this information as they might
like; one might for instance implement a location history-
service by listening for and locally storing location-events,
answering queries based on these stored events.

The architecture helps disseminating changes in relations
among the different services, as long as they agree on the
interface — i.e. the definition of the relation they are interested
in or that they provide. This dissemination process happen at
run-time, so it is possible to change it dynamically, e.g., to
change a service implementation or to add relation providers.

Altogether, services are fully decoupled. It is not necessary
to know in advance which service will provide required con-
text information, nor to know which service will use provided
context information. These dependencies will be resolved (if
possible) in the moment a service is communicating a change
in a relation.

VII. PROTOTYPE IMPLEMENTATION

A prototype implementation of the architecture has been
implemented. In this section the key properties of the prototype
are presented.

To avoid dependence on a specific programming language,
we have employed language-agnostic technologies: the HTTP
protocol, and the JSON [18] data format. Libraries for access-
ing these protocols exist for most programming languages,
making our platform easily portable—currently, we have pro-
totype support for Java, C#, Javascript and Python.

Dispatching events in an asynchronous fashion using the
HTTP protocol is straightforward if the subscribing service is
itself exposed as a web server, and this kind of communication
is supported in our prototype. However, to overcome firewalls
and NAT routers breaking the architecture, we leverage the
Bayeux protocol [19], which offers a publish/subscribe mech-
anism over HTTP. As the Bayeux subscription mechanism is
topic-based, we built a thin protocol on top of it that simulates
content-based subscription [20]: first the service subscribes to
a system channel, then it tells the server which event pattern
it is interested in, and finally the server responds with an
event channel. The service proceeds to subscribe to this latter
channel, whence it will receive the contextual events.

We have observed two disadvantages of Bayeux. First,
the protocol itself imposes noticeable network overhead: ev-
ery time events are received, a new connection is made
to the server. Second, different server implementations are
not yet fully interoperable, requiring slight adaptations to
work smoothly. Thus, in the future we will experiment with
alternative interfaces, e.g., Web Sockets [21].

Regardless of transport technology, services specify event
streams by providing to the server a pattern, a list of triples
in the form of {FieldName, Operator, Value}. To
check if a pattern matches a particular event, event and pattern
values are compared using the operator; if all are satisfied,

417

Fig. 1. Context model; services L and L′ consume wifimac, wifisensor and btmac, btsensor relations, respectively, and both export passenger, area;
this relation is consumed by H , which emits passenger, securitystate relations

Example Description
publish ekahau[wifimac, zone] Declare intent to publish ekahau events, carrying data-fields wifimac and zone.
notify ekahau[wifimac=0x2f, wifisensor=0x31] Publish ekahau event carrying the indicated data.
subscribe ekahau[wifimac, wifisensor=0x31] Request notification of future ekahau events for which wifisensor is 0x31, wifimac

arbitrary. Such filtering is optional. Used with callback below.
receive ekahau [wifimac=x, zone=y] Callback. Receive notification of ekahau event; x and y will be filled in.

TABLE I
SERVICE/DISTRIBUTION INTERFACE

the event is delivered. An event is a key/value tuple, without
special attributes; to simulate type of events, each event is
tagged with the field type. Supported operators are equality,
containment, size comparison and an undefined operator,
requiring the field not to be present in the event. This very
basic language, with its obviously limited expressiveness, turns
out to be sufficient for our sample applications. In the future,
we expect to expand the available operators, and to support
disjoint patterns.

For the initial prototype implementation, subscription and
dispatch are handled by a centralized server, making deploy-
ment simple. Note that we centralized the dissemination of the
events, not the representation of context — that resides with in-
dividual services, if at all, so it is already distributed. The main
disadvantage is that all communication must be handled by
a single machine, limiting system scalability. For supporting
larger wide-area installations, we envision moving to a fully
distributed event-distribution mechanism as future work. More
precisely, we will leave the server/services communication as-
is, implementing the distribution only at the server level. A
simple possible solution is to enrich the runtime with some
system messages that makes a server aware of the presence
of other servers, and using the very same event distribution
system we already have, maintain their state. This way, when a
service subscribes to an event stream, the same subscription is
replicated on all the servers that provides a compatible stream.

VIII. EXTENDED EXAMPLE

Figure 2 shows an outline of a web application display-
ing simply users’ locations running at http://tiger.itu.dk:8000/
ITUitter/.

If the user has, say, a BT capable phone, its location
can be detected by BT sensors, providing crude zone based
tracking. When the phone moves between zones, an event
updating the BT-interface/sensor relation is emitted on the
hub. Any services subscribing to such events will receive it; in
particular, a conversion service maintaining a user/area relation
will receive it and emit a user/area update event. It bases its
conversion from BT interface to user on information received

Genie Hub

BT
Adapter

WiFi
Adapter

BT Location
Converter

WiFi Location
Converter

WEB App

Other services, like

Device/User Mapper,
Interface/Device Mapper

Browser

BT Tracking
System

WiFi Tracking System
type = device moved
tonode = A5005017
technology = BT
...

type = device moved
toarea = Auditorium
device = IMEI4217
user = Fred
technology = BT
...

Fig. 2. Outline of a web application for displaying an active map of users’
locations.

via events from services that maintain interface/device and
device/user relations. The web application subscribes to these
events, and updates browser displays accordingly.

The flexibility and extensibility of this architecture is
demonstrated by integrating WiFi-based trilateration simply by
connecting a WiFi event adapter to the genie hub, and adding
a WiFi location converter.

Also note that service discovery and service composition
has been relegated to transformer services and replaced with
the problem of simply listening for the right events, viz. the
BT/WiFi location converter services above. The Web App
application itself need not concern itself with exactly how the
events it is listening for are synthesized, not which services
are involved in that synthesization. Moreover, if only BT-
tracking were available in some locations and only WiFi
in other, the Web App would receive events arising from
either subsystem as appropriate, oblivious to the difference.
Thus, service discovery and composition happen completely

418

dynamically, and transparently for the application.
It is important to note that this architecture is not con-

strained to mere location-based applications. For instance,
our university has extensive databases on course membership,
course room allocations etc. As we hinted above, activity
of individuals at the university can to a large degree be
approximated from data in these databases; moreover, the
database representation of such information fits snugly into
the relational context meta-model of our framework.

IX. RELATED WORK

Research into software architectures for context-aware ap-
plications has been a hot research topic for the last decade.
Presently, we contrast our proposed architecture to four exist-
ing ones: The seminal Context Toolkit [2], Solar [22], [23],
SOCAM [24], and SLCA [25]. There are of course many more
such architectures; these four were chosen for their influence
and familiarity, and because it is instructive to observe the
differences to our architecture.

The Context Toolkit resembles our architecture in that
it affords code reuse through compositionality, and in that
this is achieved by breaking the computation of what is
context into distinct pieces, called widgets. The key difference
with our work is that composition in the former is object
oriented, whereas for us it is data driven. A context widget
explicitly decides which other widgets to use, whereas our
services only decide what information they need. In a sense,
the present work refines the compositionality of the Context
Toolkit by separating the notions of context information and
code computing context information, notions which coincide
in the widget-abstraction. This decoupling refinement offers
the key advantages of increased code re-use through increased
modularity (cf. Sections III and VIII); and a dynamic and
transparent context-source switch-over technique (cf. Section
IV).

Solar is a distributed and event-based architecture that is
data-driven, but in a different sense than the present work.
It is superficially very similar to the present effort. The key
difference—Solar’s impressive array of applications and much
greater maturity aside—is the notion of “data-driven”. The
present notion of service is almost the same as a Solar
operator; both consume a number of input event streams
and produce a number of output event streams. However
Solar conflates the notions of event stream and event stream
provider, conflating context information with its producer.
Thus the examples of code reuse and dynamic composition
from Section III are not immediately realisable in Solar.

The notion of data-driven employed by Solar is instead
one in which subscriptions can be data dependent. That is,
an operator may specify that it is dependent on some event
stream identified by the data currently carried by some other
operator. For instance, an operator might specify that it wants
video data from a camera selected by the computation of some
operator.

This data-driven event stream selection is the primary dy-
namic composition mechanism of Solar. This mechanism is

almost but not quite strong enough to realise the examples of
dynamic and transparent context-source switchover of Section
IV: while it can certainly do the switchover, it will be
necessary to construct an operator emitting events whenever
the switchover is necessary, partly defeating transparency.
Moreover, it is easy to find examples where two operators
could meaningfully simultaneously inject events into the same
event stream, e.g., partially overlapping sensors sub-systems.

Next, SOCAM, the Service-Oriented Context-Aware Mid-
dleware, resembles the present work. One, it proposes a bridge
between the notions of service and the notion of context-
aware. Two, it proposes that the services comprising a system
communicate using a shared context meta-model. Three, it
proposes that this meta-model be used for indirection; that
instead of services contacting context information producers
directly, they request specific information, whence the re-
quested information is automatically routed their way.

However, the notion of context-aware service proposed by
SOCAM encourages larger pieces of functionality than in the
present framework; in particular, SOCAM services are, with
two exceptions, expected only to use context information, not
take part in the production of that information. Communication
using a shared meta-model and the indirection that services
request information, not other services, is of course the same
mechanism as in the present work. However, SOCAM’s meta-
model is a highly structured ontology model, where as ours
are but flat relations. Moreover, whereas matching a service’
request to the available information streams is in our case
the simple matter of comparing stream types, SOCAM relies
on a specialised Service Locating Service interacting with a
centralised knowledge-base, rule-base and reasoning engine.

In short, whereas we envision context-aware services as
small, lightweight processes participating in computing the
context represented relationally, SOCAM envisions context-
aware services as business-service-sized pieces of functionality
using highly structured context information to locate each
other.

Finally, SLCA, the Service Lightweight Component Ar-
chitecture. The present work resembles SLCA in that both
emphasises event-based decoupling and light-weight compo-
sition of services. However, the approaches are not really
comparable: Whereas the present architecture uses events to
decouple services via a context meta-model, SLCA uses a
high-performance service orchestration mecahnism. So com-
position in SLCA is service-oriented: it is one of services;
whereas in the present work composition is data-driven: it is
one of event streams.

X. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an event based, data driven
and SOA for context aware applications. The architecture
emphasizes code re-usability and fine grained dynamic context
adaptation.

Starting from the observation that context-aware applica-
tions must compute what is the context, the framework en-
courages the programmer to split that computation into small

419

parts, each part performed by a service. Services are strongly
decoupled, communicating only by requesting or producing
specific context information. A producing service does not
know exactly who are its consumers; conversely, a consuming
service does not know exactly who are its producers. This
decoupling yields strong code re-usability and the opportunity
for highly dynamic run-time adaptation. The prime example
of the latter is the transparent switch-over between location
systems, afforded simply by the fact that the high-level service
does not need to care whether location events originate with,
say, a WiFi location subsystem or a BT location subsystem.

a) Future Work.: A key assumption for the present
architecture is that of end users’ possession of mobile devices.
With that assumption, we have the opportunity to consider not
only how to collect and aggregate context-information, but
also how to interact with the user utilising that mobile device.
A common solution exploits that the user’s device tends to
be internet enabled, whence such interaction can be simply
web based. However, that would miss out on an opportunity
for the architecture to provide (semi-) transparent switch-over
between interaction devices—say, the user’s mobile devices
when there are no other options, public displays when they
are available, etc. Instead of handling the mere passive data
acquisition, we are pursuing a way to permits the services to
have a conversation, in a broad sense, with the user, by using
some physical actuator near the user (it might be her mobile
device, a loudspeaker, or some other interaction device).

The present architecture poses some hard questions about
privacy. In the current prototype, users have none: they are
tracked at the discretion of service providers. Envisioning that
third-party or otherwise not completely trusted applications are
allowed on the architecture, it becomes vital that users or other
parties can control which services can access what location
data. Such control is complicated by the decoupling inherent in
our architecture, because data-flow from sensors to application
can change unbeknownst to that application; in particular, the
application has no knowledge of which intermediate services
are used. A dual security issue is authentication, knowing that
context-information produced is in fact genuine.

The examples in the present paper, and the examples we
have otherwise studied in the implementation, there have been
no impedance mismatch between low-level sensor-data and
high-level context information. For instance, in this paper,
bluetooth mac-addresses and sensor-terminals map straight-
forwardly to users and zone-based location. Conceivably, in
more advanced settings, and for more advanced applications,
this correspondence between low-level sensor-data and high-
level context is less clear. Low-level decisions about sampling,
framing, etc., must intuitively follow from requirements of
the top-level application. We are confident that such deci-
sions are naturally representable by introducing suitable event-
transformers, but have yet to study a non-trivial case in
practice.

Finally, we would like to support distributed event process-
ing, and enrich the subscription pattern language.

REFERENCES

[1] Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg,
D., Ellis, J., Weiser, M.: An overview of the PARCTAB ubiquitous
computing experiment. IEEE Pers. Comm. 2 (1995) 28–43

[2] Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the
development of context-enabled applications. In: CHI 1999. (1999)

[3] Ranganathan, A., Campbell, R.H.: An infrastructure for context-
awareness based on first order logic. Pers. UbiComp 7 (2003) 353–364

[4] Bardram, J.E.: The java context awareness framework (JCAF) - a
service infrastructure and programming framework for context-aware
applications. In: Pervasive’05. Number 3468 in LNCS, Springer (2005)
98–115

[5] Tigli, J.Y., Lavirotte, S., Rey, G., Hourdin, V., Riveill, M.: Lightweight
Service Oriented Architecture for Pervasive Computing. IJCSI 4 (2009)
1–9

[6] Asthana, A., Crauatts, M., Krzyzanowski, P.: An indoor wireless system
for personalized shopping assistance. In: WMCSA ’94. (1994) 69–74

[7] Ekahau Real-time Location System: http://www.ekahau.com (2010)
[8] ZONITH Bluetooth based indoor positioning: http://www.zonith.com

(2010)
[9] Bruno, R., Delmastro, F.: Design and Analysis of a Bluetooth-Based

Indoor Localization System. In: Pers. Wireless Comm. (2003) 711–725
[10] BlipZones: http://www.blipsystems.com (2010)
[11] SPOPOS Project: http://www.spopos.dk (2010)
[12] Hansen, J.P., Alapetite, A., Andersen, H.B., Malmborg, L., Thommesen,

J.: Location-Based Services and Privacy in Airports. In: INTERACT.
(2009) 168–181

[13] Frank, T.: Airport device follows fliers’ phones. USA TODAY, March
23 (2010)

[14] Debois, S., Glenstrup, A.J., Zanitti, F.: SIC Framework Download (2010)
http://www.itu.dk/people/frza/infobus/.

[15] Glenstrup, A.J.: ITUitter (2010) http://tiger.itu.dk:8000/ITUitter/.
[16] Baader, F., Calvanese, D., McGuiness, D.L., Nardi, D., Patel-Schneider,

P.F., eds.: The Description Logic Handbook. 2nd edn. CUP (2007)
[17] Lee, D., Meier, R.: A hybrid approach to context modelling in large-

scale pervasive computing environments. In: COMSWARE’09, ACM
(2009) 1–12

[18] Introducing JSON: http://www.json.org (2010)
[19] The CometD Project: The Bayeux protocol (2010) http://cometd.org.
[20] Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces

of publish/subscribe. ACM CSUR 35 (2003) 131
[21] The Web Apps Working Group: The websocket API (2010)
[22] Chen, G., Li, M., Kotz, D.: Data-centric middleware for context-aware

pervasive computing. Perv. & Mob. Comp. 4 (2008) 216–253
[23] Kotz, D., Chen, G.: Context aggregation and dissemination in ubiquitous

computing systems. In: WMCSA’02. (2002) 105–114
[24] Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for

building context-aware services. J. Net. & Comp. Apps. 28 (2005) 1–
18

[25] Tigli, J.Y., Lavirotte, S., Rey, G., Hourdin, V., Riveill, M.: Lightweight
Service Oriented Architecture for Pervasive Computing. I. J. of C. S.
Issues 4 (2009) 1–9

420

