Pointcut Matching based on

_"intology for Aspect of Assembly

Presentation of Projet de Fin d’Etude
Student: VU Trong Tuan

i Outline

= Introduction.

= Weaving process of Aspect of Assembly
= Syntactic Pointcut Matching

= Proposed solution: a semantic extension
= Experiments

= Conclusion

i Introduction

= In ubiquitous computing, the
disappearance/appearance of devices lead the
changes of the context (physical or software
infrastructure).

= Dynamic adaptation of the application based on
the context plays an important role.

i Software Adaptation

= There are three main approaches [1]:

= Laissez faire: adaptation is entirely supported by
the applications.
= Put too much burden on the application.
= Make the development of application become more difficult,
= Application transparent: adaptation is entirely
supported by the system
= Adaptation may be not adequate or counter-productive
= Middleware ag:r'oach: collaboration between
application and the system to achieve the best
adaptation.

= Most of the works converges to manage the
adaptation by Middleware layer

i Middleware approach

= Middleware has two roles:

= Simplify the development of distributed
applications.

= Support dynamic adaptation.

= Three approaches to perform adaptation in
literature [2]
= Reflection
= Policy-based adaptation.
= Aspect-oriented programming.

i Adaptation in Middleware

= Reflection: the capability of a system to
reason and possibly alter its own behavior.

= Policy-based adaptation:
= Application states policy rules for adaptation.

= For each particular condition, the matching
rule is applied to change the middleware
behavior.

= Example: ECA (Event-Condition-Action)
= Event specifies the context changes.
= Condition test if the context change is satisfied
= If yes, Adaptation (action) will be carried out.

i Aspect oriented approach [5]

= Complex programs are composed of different
intfervened crosscutting concerns.
= Cross cutting concerns are properties or area of
interest: security, persistence. logging, ...

= Crosscutting concerns are implemented at
separate modules called aspect, and can be
adapted at Runtime

= There are 3 basic elements:

= JointPoint: an event in executing program where
the advice may be executed.

= Pointcut: set of jointpoint where the associated
advice should be executed.

= Advice: concern implementation.

i Aspect oriented approach

public class HelloWorld { -]
public static void main (String [Jargs){ B
new HelloWorld().sayHello(); execution(“HelloWorld.sayHello")
by . .
public void sayHello(){ before():0ne():{
System. out.printin("Hello World"); System.out.printin("Hello One");
;)
} /4

Weaver j,

Pointcut Matching
Advice Application

pointcut Two():

execution("HelloWorld.sayHello")

- after(): Two():{

public class Helloworld { System.out.printin("Hello Two");
public static void main (String [Jargs){ ¥

System.out.printin("Hello One");
new HelloWorld().sayHello();
System.out.printin("Hello Two");
¥
public void sayHello(){
System. out.printin("Hello World");

}

1

*Principle of Aspect of Assembly (3

;m ; e | Pointcut |:| AA |
mh Adyvice D_.H

v]
Pointcut L | AA2

(" Weaver
Advice ["E
Pointcuts Matching

Jointpoints (m ' 4

\ Advices Application

Principle of Aspect of

* Assembly

A2

Bl Al

U

" Weaver

Jointpoints

\&

Pointcuts Matching <=

NN O

Advices Application

Pointcut

Advice
Pointcut l_.
Advice L *’E

AA2

=4

Weaving process of Aspect of
ssembly

|
| Poieon, ", , 1 Processbased on AAs
18 :

i__J

| Advice, H L - | .
N\
N ; e : |
~ \ | : \
_\ t

Process based on assemblies

‘L Syntactic Pointcut Matching

= Pointcut matching is used to determined in the based
assembly all places where changes described in an AA can be
applied.

pointcut; ={Ruley, ..., Rule;}

@I N

2 > List of list of joinpoint

List of joinpoints : : ;
SPelibliot: . oort) w3 PointcutMatching pe————>» L Ej{gzurrt\t,-{l,o,;;lr:}}
i~ '100""' ijre

PointcutMatching(JPoint, pointcut;)=UPoint,

ointcut Matching Example

Base assembly

JPoint ={Al.a, A1.f, A2.3, A2.b,Bl.e,

Bl.c,B2.e,B2.a, D1.c, D2.g}

PointCut; ={Rule; Rule,}

Ruleg=A*.a

y

1. Eval Ruley=A*.a

lig=1Al.a3; A2.a}
PointCutMatching 2.Eval Rule,;=B*.a
lip={B1l.e;B2.e}

2

UPoint; ={l,;,l.}={{Al.a; A2.a}; {Bl.e; B2.e}}

Syntactic Pointcut Example

= Example: when a lamp comes to my room, T
will connect it to switchl

//Description of needed components
| := /lamp1/
sw := /switchl/ — switch |—o Of

//AA description
//pointcut->advice [t 3 Lamp |0 SetStatus
sw.on -> |.setStatus(true) .
sw.off -> I. setStatus(false)

Syntactic Pointcut Fragility

= Current Pointcut is expressed by syntactic regular
expression, i.e sw.on, sw.off.

= Syntactic pointcuts are fragile

= Their semantic may change "silently” when changes
are made to base program

= Need to revise the pointcut when there is any change
in base program.

= Solution: adding some meta-data to the component and
use them to construct the pointcut.

= Example:

= Pointcut: list all switches and lamps which are in the
same location.

= Advice: Connect them together.

utline

Introduction.
Weaving process of Aspect of Assembly

Syntactic Poincut Matching and Semantic
Interoperability

Proposed solution: a semantic extension
= Ontology

» Resource Description Framework

» Semantic Pointcut based on Ontology.

Experiments
Conclusion

i Ontology

= Ontology is a formal representation of knowledge
as a set of concepts within a domain, and the
relationships between those concepts.

= There are three main part for a onto

O CIGSS
= Individual
= Property

= Example: Car domain

Cl "

] 'IL'\mI n

ogy:

Car

Domain

subClassOf

BMWCar

ToyolaCar

HuyndaiCar

vy

Engine

Resource Description
i Framework (RDF)

= The Resource Description Framework is an XML-
based language to represent information on the
Web.

= Itis based upon the idea of making statements
about resources (in particular Web resources) in
the form of subject-predicate-object expressions
called friples.

u Examp/e.' offers »{ alightService! |

Semantic Pointcut based on
Ontology

= The initial model of context with two basic
classes Device and Services.

= Device: instance of this class are the physical
processing devices that are currently available
In a given context.

« Offers: which service does the device offers
« Where: the current location of the device.

. gl'onsume_power: the current power consumption of
evice.

= Service: this class represent all types of
services offered by the devices.

RDFS based Context Model

Context Information

er/afs:domain

BAS

rdfs:subClassOf

y

4

rdf:t“yloe

..Iightl ‘
" T -aswitch_sl

where

rdfs:subClassOf

Switch

|

rdf:type

'

offers

rderange

'S

Service

Ligh{;s Switch_S

Y
|
rdf:type rdf:type \

i Context Information

= Query example on this context:

. Device(De && where (D, Kitchen) && (exist S such that
Light_S (S) && offers (D, S)
= SPARQL:
SELECT 2d WHERE {
?d type Device .
?d where Kitchen .
?d offers ?s.
?s type Light_S.
k
B The query mentions about the abstraction information
(Classes: Device, Light_S), but the result returns their
instances

= The same query can be applicable and yield the correct
results if there is a new device (of type VerySmartLight)
appears in the environment.

i Service Annotation

= How to add the meta-data to the component?
= Used Annotation to add meta-data in the source code.

= Annotation for Device
public @interface Device {
public String name() default "{unassigned}";
public String deviceType() default "{unassigned}";
public String consume_power() default "{unassigned}";
public String location() default "{unassigned}";

}
s Annotation for the Service

public @interface Service {
public String name() default "{unassigned}";
public String serviceType() default "{unassigned}";

¥

xample Revisited

//Pointcut

A = @Device (deviceType=""Switch'’, location=""Kitchen'') && @Service

(serviceType="'Switch_S"")

B = @Device (deviceType=""Light"'’, location=""Kitchen'") && @Service

(serviceType=""Light_S"")

O On

//Advice

A->B

Switch

o Off

—0 SetStatus

i Experiments

= Conquer is tool for Ontology development,
developed by the collaboration with HADAS-LIG

= The context data presented is implemented using
Conquer [4] with the following functionalities:

= Edit the context data, i.e adding or deleting the class,
an instance of a class or a property of an instance.

= Query the context data and give the corresponding
answer.

i Conclusion

= Study about the mechanisms, approaches and
new challenges to solve the problems of adapting
application to their context in the ubiquitous
environment

= Study detail about the Aspect of Assembly
Mechanism and its current syntactic pointcut
problem

= Propose one mechanism to express the pointcut
in high abstraction level to solve the syntactic
fragile pointcut problem.

References

[1] M. Satyanarayanan. Fundamental challenges in mobile computing. In
Proceediné;s of the fifteenth annual ACM symposium on Principles of
gg’ﬁzibute computing (PODC'96), pages 1-7, New York, NY, USA, 1996.

[2] Paul Grace. Dynamic adaptation. In H. Miranda B. Garbinato and L.
Rodrigues, editors, Middleware for Network Eccentric and Mobile
Applications, pages 285{304. Springer, 2009.

[3] Jean-Yves Tigli, Stéphane Lavirotte, Gaetan Rey, Nicolas Ferr¥, Sana
Fathallah Ben Abdenneji, and Michel Riveill. Aspect of assembly: from
theory to performance.

[4] Anis Benyelloul, Fabrice Jouanot, and Marie-Christine Rousset.
Conquer tool. http://conquer.liglab.fr/home.php.

[5] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming.
SIGSOFT Softw. Eng. Notes, 26-313 September 2001

http://conquer.liglab.fr/home.php

QUESTIONS?

