
Pointcut Matching based on
Ontology for Aspect of Assembly

Presentation of Projet de Fin d’Etude
Student: VU Trong Tuan

Outline

 Introduction.
 Weaving process of Aspect of Assembly

 Syntactic Pointcut Matching

 Proposed solution: a semantic extension

 Experiments

 Conclusion

Introduction

 In ubiquitous computing, the
disappearance/appearance of devices lead the
changes of the context (physical or software
infrastructure).

 Dynamic adaptation of the application based on
the context plays an important role.

Software Adaptation

 There are three main approaches [1]:
 Laissez faire: adaptation is entirely supported by

the applications.
 Put too much burden on the application.
 Make the development of application become more difficult,

 Application transparent: adaptation is entirely
supported by the system

 Adaptation may be not adequate or counter-productive

 Middleware approach: collaboration between
application and the system to achieve the best
adaptation.

 Most of the works converges to manage the
adaptation by Middleware layer

Middleware approach

 Middleware has two roles:
 Simplify the development of distributed

applications.

 Support dynamic adaptation.

 Three approaches to perform adaptation in
literature [2]
 Reflection

 Policy-based adaptation.

 Aspect-oriented programming.

Adaptation in Middleware

 Reflection: the capability of a system to
reason and possibly alter its own behavior.

 Policy-based adaptation:
 Application states policy rules for adaptation.
 For each particular condition, the matching

rule is applied to change the middleware
behavior.

 Example: ECA (Event-Condition-Action)
 Event specifies the context changes.
 Condition test if the context change is satisfied
 If yes, Adaptation (action) will be carried out.

Aspect oriented approach [5]

 Complex programs are composed of different
intervened crosscutting concerns.
 Cross cutting concerns are properties or area of

interest: security, persistence. logging, …
 Crosscutting concerns are implemented at

separate modules called aspect, and can be
adapted at Runtime

 There are 3 basic elements:
 JointPoint: an event in executing program where

the advice may be executed.
 Pointcut: set of jointpoint where the associated

advice should be executed.
 Advice: concern implementation.

Aspect oriented approach

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

pointcut One():

 execution(“HelloWorld.sayHello”)

before():One():{

 System.out.println("Hello One");

}

pointcut Two():

 execution(“HelloWorld.sayHello”)

after(): Two():{

 System.out.println("Hello Two");

}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Weaver

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

pointcut One():

 execution(“HelloWorld.sayHello”)

before():One():{

 System.out.println("Hello One");

}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

pointcut One():

 execution(“HelloWorld.sayHello”)

before():One():{

 System.out.println("Hello One");

}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

pointcut Two():

 execution(“HelloWorld.sayHello”)

after(): Two():{

 System.out.println("Hello Two");

}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

pointcut One():

 execution(“HelloWorld.sayHello”)

before():One():{

 System.out.println("Hello One");

}

pointcut Two():

 execution(“HelloWorld.sayHello”)

after(): Two():{

 System.out.println("Hello Two");

}

public class HelloWorld {
 public static void main (String []args){
 new HelloWorld().sayHello();
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Pointcut Matching
Advice Application

public class HelloWorld {
 public static void main (String []args){
 System.out.println("Hello One");
 new HelloWorld().sayHello();
 System.out.println("Hello Two");
 }
 public void sayHello(){
 System.out.println("Hello World");
 }
}

Weaver

Principle of Aspect of Assembly [3]

Principle of Aspect of

Assembly

Weaving process of Aspect of
Assembly

Syntactic Pointcut Matching

 Pointcut matching is used to determined in the based
assembly all places where changes described in an AA can be
applied.

Pointcut Matching Example

Syntactic Pointcut Example
 Example: when a lamp comes to my room, I

will connect it to switch1
 //Description of needed components
l := /lamp1/
sw := /switch1/

//AA description
//pointcut->advice
sw.on -> l.setStatus(true)
sw.off -> I. setStatus(false)

Syntactic Pointcut Fragility

 Current Pointcut is expressed by syntactic regular
expression, i.e sw.on, sw.off.

 Syntactic pointcuts are fragile
 Their semantic may change “silently” when changes

are made to base program
 Need to revise the pointcut when there is any change

in base program.
 Solution: adding some meta-data to the component and

use them to construct the pointcut.
 Example:

 Pointcut: list all switches and lamps which are in the
same location.

 Advice: Connect them together.

Outline

 Introduction.
 Weaving process of Aspect of Assembly
 Syntactic Poincut Matching and Semantic

Interoperability
 Proposed solution: a semantic extension

 Ontology
 Resource Description Framework
 Semantic Pointcut based on Ontology.

 Experiments
 Conclusion

Ontology

 Ontology is a formal representation of knowledge
as a set of concepts within a domain, and the
relationships between those concepts.

 There are three main part for a ontology:
 Class
 Individual
 Property

 Example: Car domain

Resource Description
Framework (RDF)

 The Resource Description Framework is an XML-
based language to represent information on the
Web.

 It is based upon the idea of making statements
about resources (in particular Web resources) in
the form of subject-predicate-object expressions
called triples.

 Example:

Semantic Pointcut based on
Ontology

 The initial model of context with two basic
classes Device and Services.
 Device: instance of this class are the physical

processing devices that are currently available
in a given context.

 Offers: which service does the device offers
 Where: the current location of the device.
 Consume_power: the current power consumption of

device.

 Service: this class represent all types of
services offered by the devices.

RDFS based Context Model

Context Information

Device

Light Switch

Service

Light_S Switch_S

rdf:type

rdfs:subClas

sOf rdfs:subClas

sOf

light1 switch1

rdf:type

offers

rdfs:domain rdfs:range

aLight_S1

aSwitch_S1

offer

offer

rdfs:subClassOfrdfs:subClassOf

rdf:type rdf:type

where

where

Kitchen

Context Information

 Query example on this context:
 Device(D) && where (D, Kitchen) && (exist S such that

Light_S (S) && offers (D, S)
 SPARQL:

SELECT ?d WHERE {
 ?d type Device .
 ?d where Kitchen .
 ?d offers ?s .
 ?s type Light_S .
};

 The query mentions about the abstraction information
(Classes: Device, Light_S), but the result returns their
instances
 The same query can be applicable and yield the correct

results if there is a new device (of type VerySmartLight)
appears in the environment.

Service Annotation
 How to add the meta-data to the component?

 Used Annotation to add meta-data in the source code.

 Annotation for Device
public @interface Device {
 public String name() default "{unassigned}";
 public String deviceType() default "{unassigned}";
 public String consume_power() default "{unassigned}";
 public String location() default "{unassigned}";
 }

 Annotation for the Service
public @interface Service {
 public String name() default "{unassigned}";
 public String serviceType() default "{unassigned}";
 }

Example Revisited

//Pointcut
 A = @Device (deviceType=''Switch'', location=''Kitchen'') && @Service
(serviceType=''Switch_S'')

 B = @Device (deviceType=''Light'', location=''Kitchen'') && @Service
(serviceType=''Light_S'')

 //Advice
 A->B

Experiments

 Conquer is tool for Ontology development,
developed by the collaboration with HADAS-LIG

 The context data presented is implemented using
Conquer [4] with the following functionalities:
 Edit the context data, i.e adding or deleting the class,

an instance of a class or a property of an instance.

 Query the context data and give the corresponding
answer.

Conclusion

 Study about the mechanisms, approaches and
new challenges to solve the problems of adapting
application to their context in the ubiquitous
environment

 Study detail about the Aspect of Assembly
Mechanism and its current syntactic pointcut
problem

 Propose one mechanism to express the pointcut
in high abstraction level to solve the syntactic
fragile pointcut problem.

References

 [1] M. Satyanarayanan. Fundamental challenges in mobile computing. In
Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing (PODC'96), pages 1-7, New York, NY, USA, 1996.
ACM.

 [2] Paul Grace. Dynamic adaptation. In H. Miranda B. Garbinato and L.
Rodrigues, editors, Middleware for Network Eccentric and Mobile
Applications, pages 285{304. Springer, 2009.

 [3] Jean-Yves Tigli, Stéphane Lavirotte, Gaetan Rey, Nicolas Ferry, Sana
Fathallah Ben Abdenneji, and Michel Riveill. Aspect of assembly: from
theory to performance.

 [4] Anis Benyelloul, Fabrice Jouanot, and Marie-Christine Rousset.
Conquer tool. http://conquer.liglab.fr/home.php.

 [5] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming.
SIGSOFT Softw. Eng. Notes, 26-313 September 2001

http://conquer.liglab.fr/home.php

QUESTIONS?

