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Abstract

Present-day software systems, like modern telecommunications systems or distributed Internet applications, have

reached levels of complexity that can no longer be addressed with ad-hoc techniques. Therefore, systematic approaches

for coping with this huge complexity are required. To correctly develop such systems, interactions between the system’s

features have to be considered, as these might be the origin of incorrect system behavior. In addition to the traditional

domains of large systems, increasingly complex systems can be found in the domain of embedded control systems, of

which automotive as well as building and home control systems are interesting examples. In particular, the environ-

ment, in which an embedded control system operates, plays a crucial role in such a system’s behavior, and can thus be

the source for additional interrelationships between features. In this article, a systematic approach for the automatic

detection of feature interactions in embedded control systems is presented, which allows the identification of interac-

tions within a system as well as the detection of interactions that are caused by the environment.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Embedded control systems have already be-
come ubiquitous in today’s world, where these

systems are used in a multitude of application

domains. These domains range from controllers

for household appliances (each washer or micro-

wave is equipped with some form of computer

control), to automotive control systems (where

systems like the anti-lock braking system, ABS, or

the electronic stability program, ESP, are stan-
dard equipment in each new car), to systems that
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are employed for controlling large facilities (like

office buildings, hotels, and airports). With an ever-

increasing demand for new functionality and the
number of devices that should be controlled, the

complexity of these systems rises. Modern luxury

cars, like BMW’s 7 series, are equipped with up

to 70 controllers and house software of more than

60 MB [1]. State-of-the-art building automation

systems take a large number of different physical

effects (light, temperature, humidity, etc.) into ac-

count to attain optimal performance [2], and like
the control system of the Burj Al Arab hotel in

Dubai, control up to 26,000 data-points [3].

Because of this complexity, a number of prob-

lems arise. One of these problems is the extension

of such systems with additional functionality. This

is typically required if new user needs should be
ed.
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considered. Besides the desired behavior, this new

functionality might introduce undesirable interre-

lationships with old parts of the system, and thus

an unwanted system behavior might be the result.

Another problem can be discovered when parts of

such complex systems are to be reused, because
required interrelations to other parts of the reused

system have to be taken into account.

In the telecommunications domain, this feature

interaction problem [4] has been recognized for a

long time and has received considerable attention

from the scientific community as can be seen by

events like the ‘‘Feature Interaction Workshop’’,

which has been held for the seventh time in 2003
[5]. However, this feature interaction problem has

so far not been specifically approached for

embedded control systems––probably because

only now has the complexity reached dimensions

that requires systematic control and resolution.

As a notable difference with respect to the

telecommunications domain, embedded control

systems will almost always be embedded in a
physical environment, which provides responses to

a system’s stimuli and which is not part of the

actual software system. Because of this special role

of the environment, the identification and resolu-

tion of interactions that occur within the system is

not enough, but also interrelationships that are

introduced by interactions with the environment

must be considered.
An example for such special interactions can be

found when a building automation system for

controlling lighting and heating is considered. At

first glance, the heating control part can be real-

ized independently of the lighting control part.

However, if sunlight is employed for establishing

the desired level of illumination, the controlled

space might considerably heat up, which will
present an interaction with the temperature con-

trol part, as it has no means for avoiding this sit-

uation and thus might not be able keep the desired

temperature. A further example for this important

role of the environment comes from the automo-

tive domain. Let us assume that a car is equipped

with cruise control and the electronic stability

program (ESP) [6]. If cruise control speeds up the
car at a high rate on a wet road, the wheels will

slip. This is detected by the ESP, which intervenes
by braking the slipping wheels, thus avoiding

undesirable vehicle dynamics (like skidding). If the

cruise control component knew nothing of the ESP

feature and the physical reasons for its interven-

tions, it would continue accelerating the car, which

inevitably would result in the car leaving the road.
Before being able to treat feature interactions,

they must first be detected. In this paper, we sug-

gest detection concepts that work on requirements

specification documents, which provide an early

detection of interactions and reduce the effort for

resolving such interactions in later development

phases. Because of the complexity of the systems

under consideration, such a detection activity
cannot reasonably be performed manually. There-

fore, an automation of this activity is required.

This article elaborates on concepts and solutions

for such automation that have been first presented

in [7]. Most notably this includes the extension of

the approach from building automation systems to

the broader domain of embedded control systems

and the refinement of the detection algorithms
based on experience with first prototypes of the

detection tools.

In the remainder of this article, the product

model that classifies the elements of the require-

ments specification documents is introduced in

Section 2. Based on the entities of this product

model, our concepts and algorithms for detecting

feature interactions in embedded control systems
are presented in Section 3, followed by the results

of four case studies in Section 4. Finally, the ap-

proach is discussed and related to existing work in

the feature interaction field (Section 5).
2. The product model

For automating any development activity, ex-

plicit knowledge of the development process (in

the form of explicit models) must be available. A

product model is one such type of model that

explicitly describes the development artifacts (or

products) and the relations between them for a

given development method (see [8]). We will

therefore employ such a product model for the
feature interaction detection concepts that are

presented in this article.
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To provide a better understanding of the enti-

ties of this product model, we introduce this sec-

tion with a sketch of our requirements

specification method that produces the types of

artifacts that are specified in the product model.

2.1. The requirements specification method

In Fig. 1, an overview of the documents and

activities of our requirements specification method

PROBAnD [9,10] is provided.

System development with the PROBAnD

method starts from a problem description, which is

divided into an environment description and a col-
lection of needs.

The environment description contains a

description of the environment’s structure, which––

in the case of building control systems––could in-

clude a floor-plan showing that the building is made

up of one floor with three rooms. Further, sensors

and actuators, which resemble the interface of the

control system to its environment, are depicted.
This is usually done in natural language; e.g., in a

text that states: ‘‘There is one illumination sensor,

one motion-detector as well as one light in each of

the rooms’’.

From this environment description, an initial

control system structure can be attained, which is

usually refined in subsequent steps. To handle the

huge number of control objects that needs to be
considered for large systems, control object types
Requirements 
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Fig. 1. Documents and activities of the PROBAnD method.

Arrows depict input/output dependencies.
are formed, which are aggregated according to the

hierarchy of the environment’s objects. In the

building automation domain and in related do-

mains, this has proved to be a suitable approach.

The reason for this is that control objects (the ob-

jects of the control system) can most often be
identified with objects in the environment. For

example, the control object that is responsible for

controlling an engine of a car can be derived from

the engine object in the environment. A possible

refinement would be the introduction of an injec-

tion control object, which contributes to the

overall engine control object, and which aggre-

gates the ignition actuators (spark plugs) and an
oxygen sensor (required for emission reduction).

As introduced above, the other part of the

problem description is made up of a collection of

needs. These needs describe the requirements from

the point of view of the users, expressed in natural

language. From these needs, tasks, which resemble

developer requirements, are derived in such a way

that each task can be assigned to a single control
object type. This allows for the unambiguous

traceability of responsibilities (i.e., tasks) to con-

trol object types.

After the control object types have been identi-

fied and tasks have been assigned, strategies for

realizing the tasks are provided. These strategies

specify the behavior of a task in an operational style

using (partial) finite state machines. The behavior
of the complete control object type is achieved by

composing the respective partial state machines.

For testing purposes, prototypes can automatically

be created from such a set of control object types,

by generating intermediate specifications [11] in

SDL (Specification and Description Language [12]).

It should be noted that control object types are

introduced during the requirements specification
phase solely for the purpose of structuring the

specification in a suitable way. In the design phase,

this structure can be re-arranged. Furthermore,

the operational specification of strategies should

be understood as an exemplary solution of the

developer requirements. This is needed for gener-

ating prototypes, which are an important means

for the early validation of user requirements [13].
During the design phase, different solutions for the

strategies are possible and legitimate. This implies
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that when moving from the analysis to the design

phase, a change of the feature interactions can

occur. Therefore, a detection (and if necessary

treatment) of these changed interactions should be

performed to ensure system quality.

2.2. A small building control example

To illustrate the application of the PROBAnD

method for specifying embedded control systems

and to provide an example for the feature inter-

action detection concepts that will follow, a small

building control system is presented in the fol-

lowing paragraphs.
Let us assume that the users have the four needs

that are listed in Table 1. The first need (N1) ex-

presses the users’ wish to have an automatic con-

trol of the illumination inside a room. The second

need (N2) reflects energy-optimization criteria.

The third need (N3) is requested to guarantee

undisturbed working conditions. And finally, need

N4 represents a temperature control requirement.
According to the above activities of the

requirements specification method, these needs are

refined, leading to a collection of tasks, which are

assigned to specific control object types. The

aggregation structure of possible control object

types, which have been established using the

respective building description, is shown in Fig. 2.
Table 1

Needs of a small building control system

Need Description

N1 Provide required illumination in a room if it is

occupied

N2 Use daylight to reduce energy consumption

N3 Avoid glare at the workplace

N4 Provide required temperature in a room

RoomCt

IllumCtrl GlareCtrl

BlindAcIllumSens LightAct IllumSens

1

1 1

1

1

1

1

1 1

Fig. 2. Object structure of a small building c
The top level controller node RoomCtrl corre-

sponds to the building object room. As a refine-

ment of this structure, the remaining controllers

(IllumCtrl, GlareCtrl, and TempCtrl) have been

identified with the physical effects they should

control, which are illumination, glare and temper-

ature. Sensors and actuators can typically be found

as leaf nodes in such a structure; e.g., IllumSens or

BlindAct. In Fig. 2 two instances of IllumSens can

be found. This reflects the fact that, for illumina-

tion control, the current illumination inside the

room is required, where for glare control, we need

to determine the amount of (sun-)light that reaches

the workplace.
Table 2 lists suitable tasks for refining the above

needs. One such refinement for need N3 is pro-

vided by tasks T6 and T3, which reflect the

developer’s decision of avoiding glare by employ-

ing the blinds.
2.3. The product model of the PROBAnD method

After having introduced the PROBAnD method

and having provided an example of its application,

the method’s product model is presented in this

subsection. In order to employ the product model

for an automated approach, this model has to be

machine readable, meaning that there must be a

way of accessing––and if necessary modifying––the

instances of the product model in a systematic and
algorithmic way. The use of object-oriented meta-

models can provide the required level of formality

for reaching this goal [14,15]. Entities in this

metamodel describe types of development products

(like the environment specification documents or

the set of control object type documents).

To further classify these types and to define

the permissible relations between them, a further
rl
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Table 2

Task list of a small building control system

Task Description Realizes implemented By

T1 If room is occupied, control indoor illumination with

available light sources (blind and light), taking energy

consumption into account

N1, N2 IllumCtrl

T2 Turn light on or off on request T1 LightAct

T3 Open or close blind on request T1, T6 BlindAct

T4 Determine and report motion T1, T6 MotionSens

T5 Determine and report current illumination T1, T6 IllumSens

T6 Avoid glare at the workplace by using the blind if room is

occupied

N3 GlareCtrl

T7 Control room temperature by using the radiator N4 TempCtrl

T8 Open or close radiator valve on request T7 RadiatorAct

T9 Determine and report current temperature T7 TempSens
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level of abstraction (i.e., a meta-metamodel) is
defined, whose entities are thus metatypes of

development products. The most general meta-

type of a development product is classified as an

artifact type. On the level of the requirements

specification, each artifact has a unique name and

can carry a more detailed description. More

special metatypes of development products are

atomic artifact types, which classify development
products that cannot be decomposed any further.

Examples for atomic artifacts are attributes or

needs. Atomic artifacts contain the actual devel-

opment information independent of its represen-

tation and as such are based on an abstract

syntax (cf. [16]). Consequently, different view

types can exist for each atomic artifact, which

contain the information of an atomic artifact in a
concrete representation (based on a concrete

syntax). Additionally, the metatype configuration

type classifies artifacts that aggregate less complex

ones. Finally, document types in this classification

are special configurations, which aggregate views

only.

This classification of types of development

products provides a means for simplifying inter-
action detection. As atomic artifacts represent the

same development information as their views do,

the detection concepts can work by employing the

more abstract atomic artifacts and thus the con-

cepts benefit from the abstraction provided by

these artifacts. As a prerequisite, the set of avail-

able development documents is parsed to instan-

tiate the atomic artifacts and their relations. This
step is carried out by decomposing the concrete
documents into views, followed by extracting the

actual atomic artifact information from these

views. Such a decomposition is possible because

the development documents expose a precise

structure (e.g., in the form of tables like Table 2).

This step is similar to a programming language

compiler constructing an abstract syntax tree from

source code. Details on how this parsing of
requirements specification documents is performed

can be found in [11,17].

The atomic artifacts of the PROBAnD method

(which are instances of the atomic artifact type of

the meta-metamodel) are shown in Fig. 3. These

entities present the set of abstract development

information that is used for our feature interaction

detection process.
Needs are user requirements and as thus are

modelled as a specialization of requirement. Only

needs that represent functional requirements, i.e.,

functional needs, are considered during our

requirements specification process. Because of

their granularity and meaning, we will identify

these functional needs with features for the

remainder of this article.
Needs are realized by tasks, which are developer

requirements and as thus are also modeled as a

specialization of the atomic artifact requirement.

Each task can be realized by other tasks, which is

reflected by the realizedBy relation between the

atomic artifacts requirement and task. This rela-

tion––like all the other relations of the product

model––are explicitly reflected in the development
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Fig. 3. Atomic artifacts of the product model of the PROBAnD method.
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documents, which are used for instantiating the

atomic artifacts.

Each task describes a responsibility that has to

be fulfilled by the one control object type that
implements this very task. This unambiguous

assignment of responsibilities to tasks is described

by the one-to-many implements relation from the

atomic artifact control object type to the atomic

artifact task. As it has been depicted in Section 2.1,

these control object types are always instantiated

in a strict aggregation hierarchy, which leads to a

tree of instances. The strict aggregation is mod-
elled by the one-to-many aggregates relation be-

tween the atomic artifact control object type and

the atomic artifact instantiation.

For each task, a functional strategy is specified.

As has been pointed out, such a strategy describes

a possible solution for realizing the responsibility

(or the behavior) of the task. To establish com-

munication between strategies of different tasks,
strategies can read and write attributes as well as

produce and consume signals that are of globally

defined signal types, which can possess parameters.

Where attributes are used for the communication

between tasks of the same control object type,

signals are used for exchanging data between tasks

of different object types. It is important to note

that because of modelling guidelines of the PRO-
BAnD method, signals are only allowed to travel

along the aggregation hierarchy. This for example
implies, that if control objects at the same level of

the hierarchy need to communicate, the signals

have to be routed through the parent instance,

which aggregates the communicating instances.
3. Feature interaction detection

In Section 2.3 we have already identified func-

tional needs with features. Thereupon, the goal of

detecting feature interactions in embedded control

systems can be reached by identifying dependen-
cies between functional needs. These dependencies

can be extracted by following the relations be-

tween atomic artifacts in an instantiation of the

product model. Depending on the available

information, results with different precision can be

attained. In the following subsections, we will

present how four different levels of information

can be used for feature interaction detection. The
order of these levels resembles the usual order of

the development activities in our PROBAnD

method.

3.1. Detection at requirements level

Early in the requirements specification process,

needs and tasks are the only atomic artifacts that
will have been specified. Therefore, interactions at

this level can only be identified by employing these
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atomic artifacts together with the realizedBy links

between them. From this data, a dependency

graph between requirements can be attained. In

such a graph, points of interaction can be identified,

which are nodes that realize more than one need

and have more than one direct parent. From these
points of interaction, the actual interactions can be

deduced.

Fig. 4 shows the dependency graph for the small

building control example (Section 2.2). According

to Table 2, the needs N1 and N2 are realized by

task T1, where T1 is realized by the tasks T2 to T5.

Additionally, tasks T3 to T5 are needed for ful-

filling need N3. This leads to four points of inter-
action that can be identified: T1, T3, T4 and T5.

With the knowledge of such points of interaction,

we are able to determine a feature interaction be-

tween the needs N1 and N2 (at T1) as well as

interactions between N1, N2 and N3 (at T3, T4

and T5).

To algorithmically determine the points of

interaction, an empty set Si is created for each task
Ti (i ¼ 1; . . . ; n). Then, for each need Nj

(j ¼ 1; . . . ;m) we follow all realizedBy relations

from this need to all tasks that realize this need

and add Nj to the set Sk for each task Tk that is

traversed. At the end, a task Ti (i ¼ 1; . . . ; n) can be

identified as a point of interaction if jSij > 1 and Ti
is realizing more than one requirement (i.e., there

are more than one realizedBy links ending at Ti).
Since the first implementation of the above

concept, the experience that we have gathered in

applying the detection tools has lead us to the

conclusion that interactions that are caused by

needs that are directly realized by the task at the
N1 N2 N3

T2

T3

T5 T8

T7

T9

realizedBy

T4

N4

T1 T6

Task

Need

Point of Interaction

Fig. 4. Dependency graph of the requirements of the small

building control system.
point of interaction do not present a critical situ-

ation. An example for such an interaction is the

one between needs N1 and N2. Such interactions

are caused by a too fine-grained specification of

needs or by orthogonal needs (like need N2, which

states an energy saving requirement that needs to
be added to the basic lighting control require-

ment). Therefore, a subsequent step in the detec-

tion process is the removal of such kinds of

interactions, which can be done easily by checking

if all realized requirements at a given point of

interaction are needs.

It should further be noted that all potential

interactions are identified at this level. However,
some of these interactions will not necessarily

occur in the final system. One example for such a

condition is a task at a given point of interaction

that will never be used for realizing more than

one need simultaneously during run-time.

3.2. Detection at object structure level

To refine the above set of potential feature

interactions, interactions that cannot occur should

be eliminated. A step towards this goal can be

taken by considering the aggregation hierarchy of

the control object types. This information, which

will be available as soon as the object structure has

been specified, provides clues as to whether an

interaction can occur based on the instantiation of
control object types. As this instantiation infor-

mation refines the knowledge about the usage of a

control object type (and its implemented tasks),

some interactions might be eliminated from the list

of possible interactions. Such elimination is correct

if the dependent tasks are not ‘‘used’’ at the same

point of instantiation.

An example for such a situation is illustrated in
Fig. 5. As can be derived from the specification

documents of the small building control system,

task T5 is implemented by the control object type

IllumSens. The depending tasks T1 and T6 are

implemented by different control object types (Il-

lumCtrl and GlareCtrl respectively). Because both

individually aggregate an instance of IllumSens and

therefore will employ only this instance for real-
izing the required functionality, there will be no

interaction between tasks T1 and T6 at point T5.
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Fig. 5. Elimination of impossible interactions by using object

structure information.
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To identify such situations, we make use of a

modeling guideline of the PROBAnD method,

which requires that control object types that

implement tasks that are connected by realizedBy

relations should be instantiated as closely as pos-

sible. The reason for this is a reduction of the
number of signals that have to be routed through

other instances in the aggregation hierarchy.

Therefore, only tasks that are directly and not

transitively realized by the task at the point of

interaction have to be considered.

Let DðTiÞ be the set of all tasks that are directly

realized by Ti, and P ðTi; TjÞ the set of all control

object types that are on the shortest path between
the object type that implements task Ti and the one

that implements Tj (the algorithmic determination

of these paths can be found in [7]). If we compute

the sets P ðTi; TjÞ for all tasks Tj that are in DðTiÞ,
then there can be no interaction between the tasks

Tj at Ti if there are no common object types along

the paths except the control object type at the

point of interaction. This is the case if no inter-
section between any of two sets PðTi; TjÞ leads to a

set holding more than the control object type that

implements Ti. When computing these intersec-

tions, a set P ðTi; TjÞ that only contains one control

object type is ignored, as this implies that the

interacting tasks are implemented by the very same

object type.
For the above example of task T5, DðT5Þ is

fT1;T6g, and thus P ðT5;T1Þ ¼ fIllumSens; Illum
Ctrlg and P ðT5;T6Þ¼fIllumSens;GlareCtrlg, which

leads to the intersection {IllumSens}. Hence, there

is no interaction at point T5.

Whereas in the case of T3 (see Fig. 5) the fol-
lowing sets are computed: P ðT3;T1Þ ¼ fBlindAct;
RoomCtrl; IllumCtrlg and P ðT3;T6Þ ¼ fBlindAct;
RoomCtrl;GlareCtrlg, which leads to the intersec-

tion fBlindAct;RoomCtrlg and therefore this

interaction cannot be eliminated from the list of

potential interactions.

The same is valid for the point of interaction at

T4 (not shown in Fig. 5).

3.3. Detection at strategy level

After the above levels of information have been

considered, dependencies between tasks that are

introduced by their realization can be examined as

soon as the developers have specified the strategies

of the respective tasks. Dependencies on this level
can occur because strategies can be coupled by

signals or attributes to exchange information

(see Section 2.3).

Two observations can be made when using this

information. The first observation is that, in spite

of a possible interaction detected on the level of

the requirements, an interaction between two

tasks cannot occur if these tasks only consume
(resp. read) signals (resp. attributes) that are pro-

duced (resp. written) by the task at the point of

interaction. An example for this is task T4 of our

small control system. As this motion sensor only

produces signals that are consumed (by T1 and

T6) there will be no interaction. The detection of

such situations can be carried out easily by fol-

lowing the produces/consumes (resp. writes/reads)
relations from the atomic artifact functional

strategy to the atomic artifact signal type (resp.

attribute). However, experience has shown that

this might obscure real interactions if the devel-

opment documents are incomplete; e.g., the

information that an attribute is also written by a

second task might not have been specified.

Therefore, we refrain from implementing the
above heuristics in our current version of the

interaction detection tool.
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The second observation that can be made when

employing strategy information is, that with the

introduction of strategies, additional interactions

can originate. It is possible for a developer to

specify that the strategies of requirements that do

not participate in a realizedBy relationship oper-
ate on the same set of data. This is realized by

having these strategies read and write identical

attributes, thus introducing a coupling between

the respective tasks. If in our small control system

we introduced a need N5 that was realized by a

task T10 for setting the desired value for the

illumination level, the strategy of this task would

be implemented in such a way that a new desired
level is written to the attribute that is used for

storing this value. Task T1 in turn would be

reading this attribute for determining if the re-

quired level of illumination has already been

reached, thus an interaction between N1 and N5

would be noted.

In fact, such a situation points to inconsistent

requirements specification documents, as the
dependency that is introduced by this coupling

reflects a realizedBy relationship between tasks

that has not been specified explicitly. In the above

example, T1 relies on the setting of the desired

illumination level, whereby T1 is realized by T10.

As a consequence of this observation, our

detection process makes the coupling through

strategies explicit by creating a hypothetical real-
izedBy link between the tasks under consideration,

which then allows the identification of the new

interactions by using the algorithm introduced in

Section 3.1. However, the introduction of such

hypothetical links is feasible only for attributes

because their scope is limited to that of a single

control object type. If one tries to extend this ap-

proach to signals (which appear just to be a dif-
ferent means of communication between tasks),

the problem arises that one cannot easily limit the

scope of signals that are instances of the same type

and therefore cannot clearly determine the real-

izedBy relationships. Assuming there was a very

general signal type named acknowledge that can be

sent by any control object type to notify of the

reception of a signal, an interaction caused by all
tasks that employ this signal type would be falsely

identified.
3.4. Detection at environment level

As mentioned in Section 1, the physical envi-

ronment of an embedded control systems plays a

crucial role in its behavior, because this environ-
ment can be the source of an implicit coupling

between different parts of the system. This fact can

already be discovered in our small building control

example. The dependency graph in Fig. 4 shows no

dependencies between need N4 (temperature con-

trol) and the other needs (lighting control). How-

ever, there exists a physical link between the room

temperature and the amount of daylight that
comes into the room. The reason for this is that

sunlight can be a considerable source of heat.

Consequently, an interaction between N4 and the

other needs will be noted in the deployed system.

Therefore, it is important to consider such kinds

of interactions in the process of detecting feature

interactions. To automatically discover these

interactions, the physical interrelationships in the
environment must be made explicit, which requires

knowledge about a system’s environment. To at-

tain models that reflect this knowledge, we rely on

the fact that during the development of each

reactive system, a simulator of the system’s envi-

ronment will eventually be needed for testing the

dynamic behavior of the system before deploy-

ment. As such a simulator has to consider the
physical interrelationships for correctly simulating

the environment, the simulator’s models will con-

tain the dependencies that are needed for the

detection of feature interactions. In our case, such

simulators have been modelled using the PRO-

BAnD method. Examples are building perfor-

mance simulators [18] or a vehicle dynamics

simulator [19].
The interface of a control system to its envi-

ronment is realized by its sensors and actuators. A

sensor measures physical values of the system’s

environment; an actuator is responsible for inter-

fering with the environment, which most often

results in changes of physical values. Ergo, for

each sensor or actuator of the control system, a

matching counterpart must exist in the simulator
that provides the respective values or the expected

behavior. To easily find such matching counter-

parts when coupling a control system and a
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Fig. 7. Merged product model instances and the detected

interactions on this level.
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simulator, we create object types with identical

names in both systems [20]; e.g., the TempSens

control object type of the small building control

system will have a TempSens counterpart in the

simulation model that is responsible for providing

the simulated temperature inside the room.
Therefore, each task that is implemented by a

sensor or actuator control object type in the con-

trol system will eventually (although indirectly) be

realized by one or more tasks of the respective

simulator object type. As the dependencies be-

tween the simulator tasks reflect the physical

interrelationships, detecting the points of interac-

tion using these tasks will lead to interactions
caused by the environment.

This solution is sketched in Fig. 6 for our small

control system. We already know that T3 is real-

ized by the control object type BlindAct and that

T9 is realized by TempSens. If we assume that the

task for simulating the blind actuator is Ta, that

the task for simulating the temperature sensor is

Tb, and if we further assume that both Ta and Tb
are realized by task Tc, which is responsible for

simulating the room temperature, then this very

task Tc can be identified as a point of interaction.

This leads to the conclusion that N1, N2 and N3

expose an interaction with N4 through the physi-

cal environment.

To automatically detect these interactions, the

instantiation of the product model of the control
system and that of the simulation are systemati-

cally merged to achieve a combined model in-

stance. During this merging process, sensor and

actuator control object types are employed as

connection points between these two systems (their

names are identical as it has been pointed out

above). For each pair of implementedBy links from
N1 N2

T1

Environm

Ta

Tc

T3

N3

T6

BlindAct

realizedBy

implementedBy

Fig. 6. Dependency between lighting and heating compon
controller tasks to control object types and from

object types to simulator tasks, a hypothetical re-

alizedBy link is created analogous to Section 3.3.

Fig. 7 shows the result of such a merge for the

example above.

After this has been performed, the initial algo-
rithm from Section 3.1 can again be employed

without any modification and will return the

interactions and the corresponding points of

interaction caused by the environment.

Usually, the developers should be aware at

which point in their system (i.e., control system)

the interaction occurs. Therefore, a final step in

interaction detection is tracing back from the point
of interaction in the environment to the tasks that

implement the control object types at the connec-

tion points. In the small example, this leads to the

identification of the interactions of fN1;N2;N3;
N4g at T3 and T9.

Interestingly, the detection of additional inter-

actions through the environment again might

point to an incomplete specification (like in the
case of Section 3.3), because without explicitly

reflecting the interaction in the control system

there can be no way that this physical interaction
T7

ent

Tb

N4

T9TempSens

ents that is introduced by the physical environment.
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will be handled correctly; e.g., in our small exam-

ple there should be a task that knows of this

interaction and consequently only allows the usage

of daylight if this is not in conflict with the tem-

perature control requirement (i.e., this task would

implement some form of conflict resolution).
4. Case studies

To evaluate the above concepts and to examine

their feasibility in a real development context, tool

prototypes have been implemented and applied in

several case studies that are introduced in the fol-
lowing subsections. In these case studies, systems

for different embedded control domains have been

evaluated for their feature interactions and the

numbers of the detected interactions are given

below. These systems include two building, one

automotive, and one railway crossing control

system.

As noted above, each level in our detection
approach refines the detected feature interactions.

Therefore, the numbers of interactions for a given

level neither represent interactions that are mutu-

ally exclusive from the previous level (interactions

at the requirements level can be present at the

environment level) nor do these numbers neces-

sarily include the interactions of the previous level

(an interaction that was detected at the require-
ments level can be eliminated at the object struc-

ture level).

It should further be noted that although the

detection of interactions is possible at all devel-

opment stages, the results of the case studies have

been determined after the systems had been com-

pletely specified (i.e., the specifications already

existed before our tools were developed). There-
fore, we think it quite natural to assume that the

resulting systems (and numbers of interactions)

would have been different if our tools had been

used during development.

4.1. Building automation systems

In the first case study, a heating and lighting
control system, which we call Floor32 in the

remainder of this article, was used as an example.
A detailed description of this system and an

analysis of qualitative and quantitative develop-

ment data can be found in [21]. To give an idea, a

few of the system’s 67 needs for heating and illu-

mination are provided in Table 3.

In Floor32 a total of 233 tasks and 37 control
object types were specified for realizing the needs.

An extension of this system was used as a second

example, which we call Floor32X. The extension of

this system has been obtained by adding the

functionality of an alarm system [22]. This is re-

flected by 12 additional needs, some of which are

listed in Table 3. Further, 19 additional tasks and

three control object types have been added for
realizing the new functionality.

The number of interactions that have been

identified is shown in Table 4. No interaction

detection at the level of strategies has been per-

formed for Floor32, because no attributes had

been specified in the requirements documents.

Therefore, in order to be able to compare the two

case studies, the same kind of results is shown for
Floor32X in addition to the complete detection

results.

Typical interactions that have been identified in

Floor32 at the requirements level were fU2;
FM1;FM6g as well as fUH2;FMH2g. These

interactions are fairly obvious as the interacting

needs describe different aspects of a common fea-

ture, which is a consequence of the fact that needs
were specified fine-grained and solution-oriented.

This also explains the relatively large number of

interactions that can be identified.

When the system was extended (Floor32X), se-

ven new feature interactions were introduced on

the requirements level. One of these interactions

occurs between UA2 and FA1, which is inside the

alarm system domain. Additionally, interactions
between needs of different domains have been

identified; e.g., fU2;UA10g. This interaction oc-

curs, because both needs U2 and UA10 employ

means of lighting for their realization. This indi-

cates the problem that, as soon as an alarm is

triggered, the chosen light scene––as requested in

U2––can no longer be maintained, which is in

conflict with the original requirement.
From level 1 to level 2, the number of possible

interactions is reduced by two and the number of



Table 3

Needs of large building control systems (excerpt)

Domain Need Description

Illumination

Floor32 + Floor32X U2 As long as the room is occupied the chosen light scene has to be

maintained

FM1 Use daylight to achieve the desired illumination whenever

possible

FM6 The facility manager can turn on/off any light in a room or

hallway section

Heating

Floor32 + Floor32X UH2 The comfort temperature shall be reached as fast as possible

during heating up and shall be maintained as best as possible

afterwards

FMH2 The use of solar radiation for heating should be preferred against

using the central heating unit

Alarm

Floor32X UA2 If a person occupies a room with an activated alarm system, he/

she can deactivate the alarm system by identifying himself/herself

within talarm seconds. Otherwise, the alarm must be triggered

UA10 If an alarm is triggered, all lights in the corresponding sections

are turned on. When the alarm is reset, the lights are reset to

their previous state

FA1 The facility manager can switch off an alarm, deactivate an

alarm system, and activate the alarm system for an individual

room or for all rooms of the building

Table 4

Results of feature interaction detection for large building control systems

Level of information Number of feature interactions Number of points of interaction

Floor32 Floor32X Floor32 Floor32X

Requirements 18 21 25 27

Object structure 17 19 22 24

Strategies – – 41 – – 74

Environment 23 26 44 52 54 91
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the particular points of interactions is lessened by

three. One example of an interaction that is elimi-

nated is the one between U2 and UA2. This inter-

action is detected at the requirements level because

the control object type that is responsible for

lighting as well as the control object type that is

realizing parts of the alarm system, each aggregate a
(different) instance of the control object type Con-

tact. For lighting control, Contact is used as a sen-

sor to determine if the lamps have successfully been

turned on. For the alarm system, a contact sensor

is used for checking if a window has been opened.

Finally, by using information about the sys-

tem’s environment at level 4, three additional
interactions have been uncovered in Floor32X,

As an example, one of these interactions occurs

between FM1 and UH2, because an interaction

between the control object type TempSens, which

is needed for realizing the temperature control

need UH2, and the control object type BlindAct,

which realizes the lighting control needs FM1, is
present.

It should be pointed out that the numbers in

Table 4 differ from the numbers that were origi-

nally published in [7], because the described

improvements of the detection process (like the

elimination of interactions caused by the direct

realization of needs) have been incorporated.
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4.2. Automotive control system

A far less complex case study comes from the

automotive domain. The system that has been

evaluated implements a comfort function that
provides the smooth stopping of a car even if the

brake pedal is not softly released at the end of the

braking process. Thereupon, the needs of this

SmoothBrake system can be stated briefly (see

Table 5). N1 represents the actual feature of the

system. Need N2 provides a required level of

traffic safety, and N3 allows manual system over-

ride. In addition to the original specification, need
N4 has been added, which requires the manual

setting of the speed threshold for distinguishing

between regular and smooth brake operation.

For realizing the system, 16 tasks were specified

and assigned to seven control object types. A

further discussion of this case study and an eval-

uation of its dynamic behavior under different

situations can be found in [23]. The result of the
feature interaction detection is shown in Table 6.

The first two interactions that are identified are

fN1;N2g as well as fN3;N2g, as expected, since

need N2 is the traffic safety need that should al-

ways be guaranteed. At the strategy level, a new

interaction between N4 and N2 is introduced. This

can be attributed to the fact that the strategies of
Table 5

Needs of automotive control system

Need Description

N1 Ensure that car stops smoothly when braking

N2 Traffic safety must not be adversely impacted

N3 Manual system override should be possible

N4 It should be possible to manually set the speed

threshold

Table 6

Results of feature interaction detection for automotive control

system

Level of informa-

tion

Number of feature

interactions

Number of points

of interaction

Requirements 2 4

Object structure 2 4

Strategies 3 5

Environment 5 9
tasks that realize N4 write the speed threshold

attribute that is read by the strategies that realize

N2 to determine the driving situation for ensuring

safe operation. Finally, two more interactions are

introduced by the environment. These are caused

by the physical coupling between the brake actu-
ator and the speed sensor.

4.3. Railway crossing controller

The final case study originated as a design

contest for the SDL Forum’s SDL and MSC

Workshop in 2002 [24]. The goal was to develop a

railway crossing controller (including the required
parts of the environment) for controlling the gate

according to different control strategies; e.g., one

strategy stated that cars should take precedence

if there are too many cars waiting at the gate.

Further, a dynamic number of tracks and trains

had to be realized. This last requirement led to an

extension of our PROBAnD method to implement

dynamic instantiations. However, for feature
interaction detection, we simplified that require-

ment by modelling the fixed number of five tracks

for the crossing controller.

Our initial solution [25] contained 13 needs, 61

tasks as well as 21 control object types. For

detecting feature interactions, we have isolated the

control system part (realized by 17 tasks and six

control object types) and have applied our tool.
The results are shown in Table 7.

Other than the four interactions on the

requirements level that again can be attributed to

fine-grained needs, this system shows no addi-

tional interactions that are caused by the envi-

ronment. This is because the environment has been

considered in detail during the specification of the
Table 7

Results of feature interaction detection for railway crossing

controller

Level of information Number of

feature

interactions

Number of

points of

interaction

Requirements 4 10

Object structure 4 10

Strategies 4 12

Environment 4 12
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control part to achieve optimal control strategies,

which for example requires that the interrelation-

ship between the state of the gate (opened/closed)

and the cars (which have to wait when the gate is

closed) is considered.
5. Discussion and related work

Some of the interactions that have been identi-

fied above do not seem to be critical (for example

fU2;FM1;FM6g in Floor32, Section 4.1) and

therefore should probably not be considered in the

detection process, thus refining the set of interac-
tions. Such an elimination of interactions might be

suitable if an existing system is extended, and

therefore only the introduction of undesirable (and

thus critical) interactions with old parts of the

system has to be determined (for example fU2;
UA10g in Floor32X). However, for other devel-

opment activities this might not be the case.

Especially when reusing parts of an existing
system for constructing a new system, a detailed

knowledge of required interrelationships (which

are also feature interactions) is absolutely neces-

sary. Otherwise, important parts of the system

needed for the ‘‘reused’’ behavior might be re-

moved, which would lead to unexpected results.

To give an example for such a required interaction,

let us assume that––as a consequence of detecting
the interaction fN1;N2;N3;N4g in Section 3.4––

we have extended our small control system in such

a way that the blinds are closed when sunlight is

heating up the room, thus introducing an inter-
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Fig. 8. Dependency graph of 103 of the 331 requireme
action between N1, N2, N3, and N4 at the

requirements level. If this system now should be

reused as a temperature control system only, all

parts that are relevant for lighting (lights, blinds,

etc.) can obviously be removed. However, if this

removal is exercised without considering the re-
quired interaction between the temperature con-

troller (N4) and the blind (N2 and N3), a

malfunctioning system is the result, as the heating

up of the room due to daylight cannot be stopped.

Unfortunately, distinguishing between required

and undesirable interactions is not trivial and thus

cannot be automated without further information.

Therefore, we refer this distinction to the devel-
oper. Still, the reduction of complexity for feature

interaction detection is enormous. In Floor32X,

there were ‘‘only’’ 21 interactions at 27 points

of interaction that had to be examined at the

requirements level, compared to 331 requirements

(with 298 realizedBy links) that had to be inspected

manually for interactions without the support of

our automated approach. To give an impression of
the potential complexity of such a detection

activity, Fig. 8 shows a dependency graph for 103

requirements of Floor32X (the points of interac-

tion are highlighted).

As already pointed out in Sections 3.3 and 3.4, a

careful investigation of the specification docu-

ments is indicated if the number of feature inter-

actions between the different levels of information
increases, as this might point to deficiencies in the

underlying documents, like missing realizedBy

links between tasks or missing conflict resolution

tasks and strategies.
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5.1. General applicability

Different levels of information have been pre-

sented above, as an input to the interaction

detection approach. These different levels also
provide a means for extending the applicability of

our approach to more general domains and

requirements specification techniques. Table 8

gives an overview of the dependency on the do-

main and the specification technique for the ap-

proach at different levels.

At the requirements level, a prerequisite for our

detection algorithm to be applicable is the exis-
tence of a traceability relation between needs (user

requirements) and tasks (developer requirements).

An example of a specification language that fulfils

this requirement is the Goal Oriented Requirement

Language (GRL [26]), which provides the notion

of goal (equalling need) and task as well as a

means-end relation between goals and tasks, which

equals the realizedBy relation.
The method for detecting interactions with

knowledge of the object structure strongly relies

on the properties of the application domain. Thus,

the current algorithm cannot directly be applied to

systems that require dynamic instantiation or ob-

ject structures that deviate from a tree-like struc-

ture. However, as only a traceability relation from

tasks to the control object types is needed from the
specification technique, other domains that expose

similar object structures can be suitable candidates

for the above approaches.

To determine the contribution of signals and

attributes to the existing set of interactions, a

traceability relation from the strategies (or tasks)

to the used signal types and attributes is absolutely

necessary. This is a very strong restriction, and
therefore implies a strong dependency on the
Table 8

Applicability of detection approach depending on level of informatio

Level of information Dependency on domai

Requirements O

Object structure ++

Strategies +

Environment ++
specification technique. Additionally, only asyn-

chronous (or event-based) systems, which com-

municate using signals, are considered. No

synchronous (method-call-based) systems have so

far been studied.

Finally, at the environment level, the approach
will only be suitable for embedded systems (that

interact with an environment). Plus, without the

existence of environment simulators (or environ-

ment models) that have been specified with the

same specification technique as that of the control

system, the presented detection concept cannot

work.

The most important prerequisite for all of the
above levels to be applicable is a traceability

relation from requirements (needs) to the artifacts

that realize them. These relationships all contrib-

ute to the ‘‘post requirements specification trace-

ability’’, which is identified by Gotel and

Finkelstein in [27]. As the authors correctly ob-

serve, most development methods provide some

form of support for that, be it in a user-configured
way in general-purpose tools or by an explicit

support in special workbenches. Although some of

the more specialized tools provide automated

support for creating traceability links, most of the

information has to be provided by the developers

(e.g., which requirement is currently realized by

the ongoing activity). Therefore, the developers

should be encouraged to create and maintain ex-
plicit traceability links. Unfortunately, these links

do not seem to directly support the final product

and therefore there may be a lack of motivation of

the developers for doing this, we believe however

that as soon as the benefits of having such infor-

mation are well understood, this motivation will

increase. We have seen that these benefits include

automatic feature interaction detection and the
n

n Dependency on

specification technique

General applicability

+ +

+ O

++ O

++ )



Table 9

Size of the different parts of feature interaction detection tool

for various levels of information

Level of information Size of implementation (non-

comment source statements)

Requirements 110

Object structure 175

Strategies 110

Environment 120

Sum 515
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automatic and effortless identification of parts of

the system that are affected by changes in user

requirements.

As it is always with manual tasks, these are

prone to error. In our case, forgetting to create a

realizedBy link might hide actual interactions;
creating wrong links might introduce false ones.

The latter error is not problematic, as when

looking into the interaction in more detail, a

wrong relationship between requirements can be

discovered. The first kind of error is more prob-

lematic, as it might go unnoticed. However, as we

have pointed out in Section 3.3, the detection

algorithm at the strategy level can unveil such
missing links.

As our detection process can be applied no

matter how much information has been specified,

an interaction detection can be performed at any

time in the development process. This allows for

quality control measures to be executed whenever

suitable. We think that an ideal process would

identify interactions already at the beginning,
when only needs and tasks have been specified, to

identify possible conflicting requirements and to

resolve such conflicts. When system development

proceeds, more refined detection results can be

expected as well as a refinement of the already

detected ones at the requirements level.

Such a repetitive application of the detection

algorithms can also be used for identifying re-
quired and undesirable interactions. When an

extension activity has been performed, one should

carefully compare the interactions that have been

found before and after that step to identify unde-

sirable ones. For a reuse activity, one should

compare the interactions in the resulting system

with the ones in the reused system and check

whether necessary interactions have been removed.

5.2. Tool development

For realizing the detection tools, we have cho-

sen a technique that exploits the model charac-

teristics of the metamodel (‘‘a metamodel is a

model of a model’’). Thus, standard modelling

techniques and tools can be employed. We use
iLogix’s Rhapsody [28] for generating Java classes

from product model entities in such a way that
each class provides a way of accessing the attri-

butes and relations of the artifact it represents.

With these Java classes as a basis, we can automate

the detection concepts by mapping the abstract

algorithms on the model level to Java methods.

To achieve overall efficiency in feature interac-
tion detection, the effort for manual detection of

feature interactions needs to be compared with the

effort for the creation of the automatic tools. This

is similar to the reuse problem, i.e., reuse only pays

off if the initial effort for creating the reusable asset

is less than the total effort for creating the asset

from scratch for each new project.

Unfortunately, we have not yet been able to
perform explicit measurements of the effort (i.e.,

time) required for manual feature interaction

detection. Therefore, we can only provide an esti-

mate of the efficiency of our automated approach

by providing information on the size of the tools

that have been developed. Assuming that there is a

good correlation between size and effort, we could

deduce the effort for tool creation and compare
this with the effort of manual detection.

In Table 9, the number of non-comment source

statements (NCSS) for the interaction detection

tool is shown (NCSS is a more accurate metric

than simply counting the lines of code (LOC) [29]).

Besides the total number of NCSS, the individual

numbers for the implementation of interaction

detection at each of the different levels of infor-
mation are listed. The size of the class frames and

the code for accessing attributes and relations is

left out since these were automatically generated

by Rhapsody. We believe these numbers––and

consequently the effort for tool creation––to be

very moderate.
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Further, our tool has very modest processing

time requirements. For the concrete example of

Floor32X, the detection of the interactions used

less than one minute of CPU time on a 440 MHz

HP-PA RISC workstation (including I/O).

The tool prototype that has been employed for
interaction detection is part of our PROTAGO-

nIST tool set [30], which also includes the tool for

parsing the development documents (approxi-

mately 2,000 NCSS [17]) to generate the abstract

artifacts of the product model on which the

detection tool works.

5.3. Related work

Wilson and Magill [31] are among the few au-

thors who consider feature interactions in embed-

ded control systems by investigating home

automation systems. They recognize the impor-

tance of the environment for such systems, and

therefore focus on the devices (sensors and actu-

ators) within such an environment. A run-time (or
on-line) solution for the interaction problem is

suggested that employs device managers––which

are in fact feature managers [4]––that discard any

requests that will lead to feature interactions. To

realize such device managers, a model of the

environment is taken into account, in which the

physical variables and the kind of influence (posi-

tive or negative) of each device are specified. By
employing concepts from the operating system

domain (like mutual exclusion), different conflict

resolution strategies can be implemented within

these device managers. This on-line approach

provides a great flexibility when new devices are

added to the system. However, if these new devices

influence physical variables that have so far not

been considered or if they influence existing vari-
ables in an unknown fashion, the device managers

have to be redesigned (which is an off-line activity

that requires the extension of the environment

models).

For telecommunications systems, several fea-

ture interaction detection approaches have been

presented in the literature. Especially the pro-

ceedings of the ‘‘Feature Interaction Workshops’’
[5,32] or the ECOOP workshop [33] and the

overview papers by Calder et al. [4] and Keck and
Kuehn [34] provide good references to interesting

contributions in this area.

These contributions can be classified into ones

that use some form of system specification as input

and others that employ the actual implementation

code for feature interaction detection. Contribu-
tions of the latter kind are for example presented

by Bousquet [35], Ernst [36] and Blair and Pang

[37]. However, these approaches can only be ap-

plied late in the development process, and there-

fore undesirable interactions might have already

found their way into the final product, where

removing or resolving these interactions can be-

come very costly.
Therefore, in our opinion, solutions that em-

ploy models (or specifications) should be pre-

ferred. A comprehensive list of these solutions can

be found in [4]. A possible solution is the one

suggested by Amyot et al. [38], where undesirable

interactions are identified by employing Use Case

Maps [39] and LOTOS [40]. After features have

been semi-formally described with Use Case Maps,
these features are formally defined with LOTOS,

which can then be used as input for verification.

Many of the suggested model-based approaches

require the modeller to explicitly and formally

specify features. In contrast to this, our method

does not force the requirements engineer to pro-

vide any additional information during the speci-

fication process. The existing documents can be
used exactly as they are in our requirements

specification method without considering feature

interaction. Therefore, this approach can provide

an increase in product quality with only little

additional effort.

Because of the nature of telecommunications

systems, the environment plays a lesser role in

interaction detection in these systems. Therefore,
the above approaches will hardly be applicable for

our problem of detecting feature interactions

caused by physical couplings, unless an extension

of these approaches is considered.
6. Conclusion and perspectives

Important activities in software development

are the extension and reuse of existing systems. To
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correctly carry out these activities, the developers

need to be aware of the interactions that exist

between features. This article has shown an ap-

proach for the detection of feature interactions

that is based on a metamodel of the development

products. By specifying the detection concepts at
the model level (such as evaluating requirements

graphs), detailed information about feature inter-

actions can automatically be derived from existing

requirements specification documents at each stage

of the proposed requirements specification meth-

od. In particular, once environment simulators are

available, important information about interac-

tions caused by the environment of the system can
be obtained.

This approach can also be used for guiding the

developer in such a way that undesirable inter-

actions between features can be avoided. In par-

ticular, this means that after each important step

in the requirements specification process (e.g.,

after important tasks have been performed),

possible interactions can be computed, and the
developers can decide how to handle undesirable

interactions.

Such an effortless computation of feature

interactions could easily be used for computing

design metrics for evaluating the quality of the

models. An example of such a metric is the

number of interactions in relation to the number

of requirements. Depending on the domain that is
considered and the development method that is

employed, a high ratio might point to a bad

system design as too many fine-grained require-

ments might have been specified. A good starting

point for establishing and validating such metrics

can be the case studies that have been presented

here.

So far, our method has been implemented off-
line. This was possible as the static aggregation

hierarchy of the control object types and the static

communication dependencies between strategies

prevented unexpected changes in the system.

However, when moving away from such static

structures (e.g., in order to reflect dynamic usage

and reconfiguration scenarios in large office

buildings or smart homes), an investigation of on-
line (i.e., run-time) techniques [41] may be benefi-

cial.
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