inria-00436041, version 1 - 25 Nov 2009

Author manuscript, published in “"Network Operations and Management Symposium (2010)"

ROCS: a Remotely Provisioned OSGi Framework
for Ambient Systems

Stéphane Frénot*, Noha Ibrahim®, Frédéric Le Mouél*, Amira Ben Hamida*, Julien Ponge*,
Mathieu Chantrel*, Denis Beras™
*Université de Lyon, INRIA Email: firstname.lastname @insa-lyon.fr
TGrenoble Informatics Laboratory, Grenoble, France firstname.lastname @imag.fr

Abstract—One of the challenges of ambient systems lies in
providing all the available services of the environment to the
ambient devices, even if they do not physically host those services.
Although this challenge has come to find a solution through cloud
computing, there are still few devices and operating systems that
enable applications execution by only uploading the required
components into the runtime environment.

The ROCS (Remote OSGi Caching Service) framework is
a novel proposal which relies on a heavy-weighted standard
Java/OSGi stack. It is distributed between class servers and ambi-
ent devices to provide full functionalities to resource-constrained
environments. The ROCS framework provides improvements in
two areas. First, it defines a minimal bootstrap environment
that runs a standard Java/OSGi stack. Secondly, it provides an
architecture for loading any necessary missing class from remote
servers into memory at runtime.

Our first results show similar performances when classes are
either remotely downloaded into the main memory from a local
network or from a flash drive. These results suggest a way to
design minimalistic middleware that dynamically obtain their
applications from the network as a first step towards cloud-aware
operating systems.

I. INTRODUCTION

In ambient environments, equipment units take into account
their local context to run applications adapted to their con-
straints. These applications are rather ephemeral and can be
updated / uninstalled on a regular basis. We call ambient
devices small devices that host these applications and integrate
an operating system that enables this dynamic behavior.

Virtual machines are becoming a standard for deploying
and loading components required to execute an application.
Such applications are composed by assembling components.
This approach allows the virtual machine to easily identify and
isolate the classes to load. We assume that a “good” operating
system may not have to download the components but rather
only their descriptions. When needed, the operating system
provides the necessary component resources and executable
instructions directly from the network into the device memory.
Our concerns are emphasized by our xDSL-Box targeted
equipment, where a box is an intermediate equipment that lays
between the end-user applications and the network provider
DSLAM. In this model, boxes are physically deployed at
the user home and have no extension facilities (e.g., it is
difficult to increase memory or hard-drive capacities). In
ambient environment where connectivity is (mostly) always
available, it is worth adopting this approach for dynamically

loading classes without physically storing them on the box.
This approach, which uses components that are not already
available from the devices, is very much related to cloud
computing. Briefly, cloud computing [1] is about services
being encapsulated, having APIs for accessing them, and being
always available over the network. This makes for a relatively
straightforward parallel with our cloud operating system.

Among the possible execution environments for ambient
environment, Java/OSGi [2] holds an interesting position.
Indeed, it allows an easy deployment of applications, in the
form of jar files called bundles. OSGi also takes advantage
of the type safety of Java, and enhances the programming
model by relying on a service-oriented approach. We believe
that OSGi is the most promising solution for dynamic systems
dedicated to ambient environments. Yet, we believe that OSGi
has one major drawback: implementations download new
applications executable code and resources into a local cache.
In our opinion, this behavior is the main hindrance to the
integration of the OSGi platform in ambient environments.
Caches contain all the resources that a given application may
need, even though a significant proportion of classes is often
never used throughout executions, which drastically reduces
the number of applications that can be installed as space is
wasted.

This article presents ROCS, an elegant solution that relies
on the OSGi components approach for application life-cycle
management, and on Java remote class loading mechanisms
for deporting classes deployment to a remote server. With
ROCS, OSGi application resources are never stored on the
ambient device since they are downloaded only when strictly
necessary directly into the Java Virtual Machine memory.
Nevertheless, in order to host a standard Java SE/OSGi runtime
stack we also have to find a solution for running a full class
40MB Java/OSGi system on a 8MB flash environment. The
ROCS framework enables a minimal bootstrap environment
for the Java/OSGi stack that fits within the 8MB limitation.
This first result shows that we can have new home equipment
with limited storage capacities only for caching component de-
scription. Another result shows that the network downloading
of classes is mostly equivalent to getting them from a slow
flash hard-drive, and by way of consequence is viable in a
mostly “always-connected world”.

Section II presents the necessary technical context to under-
stand the ROCS architecture which is detailed in Section III

http://hal.inria.fr/inria-00436041/fr/
http://hal.archives-ouvertes.fr

inria-00436041, version 1 - 25 Nov 2009

Section IV presents test results that confirm a real interest
in using our approach, as performances are not downgraded
compared to a local execution runtime. Finally, Section V
concludes the present article.

II. TECHNICAL CONTEXT

The following section starts by providing a review of start
of the art that relates to ROCS. Then, we briefly recall
the concepts and main technical aspects that are useful for
understanding this paper concerning Java classes loading and
the OSGi framework.

A. State of the Art

Current ambient operating systems such as Android[5],
iPhone OS [3] or J2ME [4] rely on virtual machines and com-
ponent oriented approaches. Programming lightweight embed-
ded systems has become the problem studied in many research
works [5]. They focus on developing lightweight components
and services in order to deploy them on resource-constraint
devices. These architectures adopt the same approach: when a
customer needs an application (s)he downloads it and starts
it from the local device. All resources, whether provided
or needed by the application, are locally provisioned (e.g.,
downloading an application from the Apple AppStore). By
contrast, ROCS defends an approach that initially downloads
each component description for controlling local compatibility,
and then only fetches the required resources into memory,
without ever storing them locally. The ROCS concepts are
totally agnostics of service frameworks such as OSGi, Android
or J2ME, as it relies on low-layer virtual machine capabilities.
Related works focus on runtime optimizations, whereas we
focus on provisioning optimization. This provisioning issue
is directly related to cloud computing [1] where resources
are available from somewhere on the network and are being
delivered on demand.

Many embedded Java solutions rely on specific tailored
implementations [6], [7], [8], [9], and [10]. Given that the
standard Java runtime class library is too large to fit on ambient
devices local disks, most operating systems do not use Java
SE and focus on dedicated, stripped-down libraries for these
environments.

Still, existing technologies such as Java RMI and Java Ap-
plet enable to remotely and dynamically install new classes at
runtime from remote locations. Actually, the hidden standard
Java mechanism relies on class loaders in the virtual machine
to define classes provided through remote locations.

Finally, OSGi relies on a bundle approach that isolates
a subset of classes that take part in the realization of an
application. Isolation is provided through a specific class
loader infrastructure which deviates from the “standard”, tree-
based way of organizing classloaders into hierarchies.

Our architecture is based on the tools provided through
standard Java remote class loading architecture, and on OSGi
specification to isolate and define applications needs. In the
remainder of this section, standard Java class loaders struc-
ture as well as some elements of the OSGi architecture are
presented.

B. Java Class Loading

Java classes are defined in files containing their corre-
sponding compiled Java bytecode (.class files). Classes
are loaded on-demand by specific Java object instances of
ClassLoader subclasses [11]. Class loaders must find
classes and must store their bytecodes in memory. Class loader
objects are usually triggered when a constructor invocation is
performed for the first time on a given class. For instance,
the first time the line "new java.util.Vector ()" is
encountered the class loading architecture loads the related
class bytecode in memory, thus effectively loading the class
definition, and invokes the constructor method. There are
three standard class loaders. First, the bootstrap class loader
handles the classes that are part of the standard Java run-
time, stored in a file which is usually rt.jar on Sun-
derived implementations. Secondly, the extension class loader
handles classes which are in a specific location of the Java
runtime environment (e.g., vendor-specific implementations of
the cryptographic libraries). Finally, the system class loader
handles user-defined classes made available on the file system
through the CLASSPATH environment variable. If Java class
loading was limited to these three class loaders, Java would
not be so dynamic, as it could not automatically retrieve
classes at runtime from dynamically defined locations. Given
that class loaders are standard classes, they can be extended
to deliver customized functionalities. One classical behavior
consists in retrieving classes from remote locations through
the URLClassLoader class loader, which points to remote
URLs where new classes definitions and resources can be
found.

The classes loaded by a given class loader are isolated
from each other. In particular, they are executed in a dedi-
cated namespace [12], which prevents naming conflicts and
uncontrolled access between classes developed and provided
by independent vendors.

Class loading obeys the following rules:

1) The caller class loader is used. For instance if code in
class A makes a new B () call, the same class loader
that was used for loading A is used to load B.

2) When a class loader loads a class, it must first ask its
parent class loader wether it already has the definition or
not. It means that local classes are loaded before remote
one and system classes are loaded first. This approach
avoids overriding standard classes, it improves isolation,
it enables class versioning, and finally, it improves
security.

3) When a class loader loads a class, all classes belonging
to the same package must be loaded by the same class
loader.

4) Some weird restrictions are put on Java.x and
javax.* packages. Some implementations impose that
java.x / javax.x classes have to be loaded by the
bootstrap class loader. The historical reason is that the
bootstrap class loader is “trusted”.

If a class loader conforms to these rules, then it can load

inria-00436041, version 1 - 25 Nov 2009

classes from any place and it can isolate new classes definitions
from each other. This approach of a dedicated class loader to
load a complete application is the cornerstone of the OSGi
framework.

C. OSGi: a multi Java applications framework

The OSGi specification defines a multi application layer
on top of Java. The main idea is to package applications as
collections of classes and resources in Java archives handled
by an OSGi framework. Each Java archive is then called a
bundle, which is typically downloaded from a remote location
and installed locally before it can be started. When it is started,
the OSGi framework associates the bundle with a module
loader, which is a specific class loader dedicated to the newly
installed application. The module loader isolates the resources
contained in the bundle from other bundles. Then, the OSGi
framework instantiates a class from the bundle, which is
implements a specific Java interface (BundleActivator),
and which forces the class to implement two methods that are
called on two lifecycle events: start and stop. This start/stop
sequence enables the materialization of a multi-application
layer above Java. A bundle usually contains:

o a descriptor file (Java manifest format),

o a startup class that implements the BundleActivator
interface,

« Java classes from one or several Java packages,

« resource files, such as pictures and other data,

o embedded archives (JAR files within a JAR file), and

o native libraries.

One key feature of the OSGi framework is the seamless
support of application deployment: new applications can be
installed, updated and uninstalled at runtime without requiring
a restart of the Java virtual machine, as the large majority of
non-OSGi applications do.

The OSGi specifications state that bundles must be saved,
along with their state, so that an entire service platform can
be stopped and restarted without any loss of configuration
information. In order to achieve this, OSGi implementations
use a cache on the local file system. Most implementations
associate a cache with a named user profile, or profile ID, in a
directory such as .<osgiImpl>/<profileName>/ for
convenience purposes. Each profile contains its own set of
installed bundles.

The cache structure stores all bundles that have been in-
stalled during the running framework. Each time a bundle is
started from a remote URL, the bundle is first downloaded
from the remote location, then unpacked and renamed in the
local cache, before being finally started.

The next section describes the ROCS architecture that
creates a shadow cache of locally installed bundles and defines
a minimal bootstrap environment for the OSGi/Java stack.

III. A REMOTELY PROVISIONED OSGI FRAMEWORK

In this section, we first describe the general ROCS archi-
tecture, then we detail the ROCS server specific architecture.

Finally, we present how we designed the minimal runtime
environment for bootstrapping OSGi/Java stack.

A. General Architecture

The ROCS framework relies on two elements: Ambient
devices that run standard OSGi frameworks, and Remote
Cache Servers that deliver class bytecode on-demand. Our
architecture is 100% compliant with the OSGi specifications.
The only difference is that bundle-embedded classes and re-
sources are initially not downloaded onto the ambient devices.

The ROCS server downloads each requested bundle from
its remote bundle repository and stores it locally. Then, the
ambient device framework downloads the meta-data contained
in the bundle manifest. Once the attributes have been obtained
from the ROCS server, a local shadow cache is created. It has
the same structure as the standard implementations, except that
resources are not deployed locally.

When this deployment phase ends, the bundle is into the Re-
solved or the Installed OSGi status. If the bundle is Resolved, it
can be started. The starting process instantiates the class whose
name is identified by the BundleActivator manifest property
and invokes its start method. Thus, when the BundleActivator
class needs to be created, its class bytecode is downloaded
from the ROCS server and brought straight into the memory
of the ambient device through remote calls. If the start
method does not throw any exception, the bundle turns into
the Started OSGi status. Once it has been started, every time
a new class or resource from the bundle is needed, a new call
is made to download the corresponding bytecode as an array
of bytes' from the ROCS server.

Figure 1, shows the various elements of the ROCS archi-

tecture.

Ambient @

Device Repository
RMI HTTP,
s
Local s w cache Bunc.j|e
Repository

Ambient

Device
Local s dwa cache

Ambient Remote Bundle cache

Device

Fig. 1. ROCS Architecture

B. ROCS server design

As we want to keep the standard OSGi infrastructure, we
introduce an extension to the bundle installation procedure.

'In our implementation, we use RMI, but any transport mechanism can be
used such as raw TCP, UDP, HTTP, or SOAP. The only requirement is to be
able to transport primitive types and arrays of primitive types

inria-00436041, version 1 - 25 Nov 2009

When installing a bundle, the ambient device issues a com-
mand that indicates the URL from which the bundle can
be retrieved. The OSGi framework uses various handlers to
manage URL schemes (e.g., http: or file:). In our case,
we added a handler for a new reference:http: URL
scheme. When the OSGi framework encounters such a scheme
it automatically uses the ROCS server. We first describe the
ROCS architecture additional classes, then we describe how
a bundle is installed and when a required bundle resource is
resolved.

ROCS additional classes. As illustrated on Figure 2, the
bundle management architecture relies on two interfaces:
BundleRevision and IContent?2.

Ambient device classes

BundleRevision <<interface>>

IContent

+<<creator»> (logger:Logger,revisionRootDir:File,
location:String)

+getManifestHeader(): Map

+getContent(): IContent

JarRevision| |Remote)arRevision
(

Fstore(urListring!

+hasEnt ry(name:String): boolean
+getEntry(name:String): byte[]

JarContent | RemotejarContent |
|- remotedc: RemotedarContentServerlfc |
L 1

<<interfaces>
RemotejarRevisionServerifc

<<interfaces>
RemotejarContentServerifc

+store({url:String): long +hasEntry(name:string): boolean
+getManifestHeader(id:long) : Hashtable +getEntryAsBytes (name:String): bytel]
+getContent(id:long) : RemotedarContentServerIfc | |+getEntryAscontent (name:String): RemotelarContentServerIfc

|Remote]arRevisionServerlmpl
I |
:

|RemotejarContentServerlmpl
I
| E

ROCS server classes

Fig. 2. The ROCS class diagram. Classes in dark exist in Felix; classes in
white are our contributions.

The BundleRevision interface represents the access
to the bundle meta-data and its content. The meta-data
information enables the creation of the ModuleLoader
class loader that isolates the bundle classes, and gives a
reference to an IContent object. The IContent interface
represents accesses to the bundle content. In order to build
a remote access to these interfaces, we build peer interfaces
on the ROCS servers. BundleRevision is paired with
RemoteJarRevisionServerIfc and IContent
is paired with RemoteJarContentServerIfc. The
RemoteJarRevisionServerIfc has one additional
method, store (URL string); that asks the ROCS
server to download the Bundle from the repositories.
Once the method has been applied, the framework works
transparently since all other methods are peered with remote
ones. On the ambient framework side, we override the standard
implementation classes JarRevision and JarContent
with RemoteJarRevision and RemoteJarContent,
which are proxies of the remote ROCS server. On
the server side RemoteJarRevisionImpl and
RemoteJarContentServerImpl are the servers

2These interfaces names come from the Apache Felix OSGi implementa-
tion. We also implemented the same architecture on the alternative Concierge
OSGi implementation.

that manage access to bundle classes and resource byte
arrays.

Bundle Installation. When installing a new bundle, the frame-
work identifies the reference:http scheme and triggers
the sequence illustrated in Figure 3.

N | Remote)arRevisionServerimpl ‘
I |

BundleArchive
—

#|Remote]arRevision |
createRevisionFromLocation(.|.)| <<create== N

RMI registry access
storefurl) | s
I
e— — — Il
getManifest() getManifest() getManifest(long)|
AT T T i—__Ha_sh_ma_p_'!. ________
T T Network a

Fig. 3. Sequence diagram: remote bundle installation.

The RemoteJarRevisionServerImpl is always alive
and the framework BundleArchive class creates the
RemoteJarRevision instance which is the stub to the
RemoteJarRevisionServerImpl. The first method to
be called is "store (URL string)", and returns a 1ong
value representing the bundle ID. This id is inserted as a
parameter for the remaining accesses to the remote bundle.
During this step, the framework creates the shadow bundle
cache on the ambient device and controls that the bundle
satisfies the required conditions to be installed. Once installed,
remote bundle resources can be resolved.

Bundle Resources Resolution. When the framework needs
to access resources from the bundle it triggers the sequence
diagram shown in Figure 4.

[Bundlearchive| [RemotejarRevision|

| |RemotejarRevisionServerimpl
T 1L T P ——————

. -

Gefontent! tContent() etContent()
aefcanizntl] g g ! RemoteJarContentServerimpl
i P
T T T T T RemofejarContentServeritc © T T T T T T
=——===#|Remotejarcontent i
B —
IContent IContent -
P t pr
U R B RS | ISR P | S,
bytel} n | Byth]

L L L Network L L

Fig. 4. Sequence diagram: remote bundle resolution.

The sequence creates a RemoteJarContent instance,
which is a proxy of the RemoteJarContentServerIfc
service. Each time a new class is needed, the standard
class loading mechanism is launched. If the class comes
from the current ModuleLoader installer, it makes a call
to the "getEntry (String name)" remote method of
RemoteJarContentServerIfc. The byte array that is
returned is defined as a Java class using the framework stan-
dard mechanism. The entire remote mechanism is transparent
to both the OSGi and the transport mechanism that we use

inria-00436041, version 1 - 25 Nov 2009

between the ambient device and the ROCS server. With this
approach, all resources are directly loaded into the virtual
machine memory without having to be first stored on the local
device storage.

C. Designing a minimal runtime environment for booting
OSGi framework

Standard Java classes consume a sensible amount of disk
space: around 35 MB for IBM Blackdown 1.4, 40 MB for
Sun JVM 1.5, and 9 MB for GNU Classpath 0.93. These
classes are too big to fit on an ambient device. Our solution
is to use the ROCS framework to handle standard classes that
are not necessary at boot-time. We boot Java/OSGi with a
minimalist local classpath, and then install a classpath bundle
containing all of the standard Java classes which it then re-
exports. Using this approach, standard classes are also isolated
in a bundle class loader: each time another bundle needs
to access a standard class, it needs to explicitly import the
corresponding Java package, which is from our point of view
an advantage since we know exactly which packages are being
used.

This approach raises two questions. How can we extract the

minimal boot classpath? Is it working for java. packages?
Extracting the minimal boot classpath. As a first empirical
approach, we designed a script that generates the classpath
bundle automatically. The script starts the OSGi framework
with a remote classpath bundle that exports no package. The
script logs all classes which are loaded during boot time with
the virtual machine verbose:class option. From that list,
it computes the needed packages list, builds the Jar file for the
local classpath, and builds the OSGi manifest file with all the
required classes.
Relaxing the java.* limitation. This limitation is only ex-
pressed in the Java Security Architecture specifications: “Due
to historical reasons, all [java. *] classes have a class loader
that is [the primordial class loader].”>. Both the language
and the JVM specifications do not specify any instructions
regarding this topic. Our experiments show that this behavior
is not enforced by the virtual machines we tested, but only
by OSGi frameworks. We patched this limitation in our OSGi
implementation and enabled classes from java.* packages
to be provided by standard OSGi bundles. We also patched the
OSGi implementation in order to resolve standard classes from
the classpath bundle before searching in the local classpath.
This approach suggests that we seek new classes from the
network before their local implementation, which enables to
bypass the resource limitations in the ambient environment
dynamic use-case.

Our architecture is able to bootstrap a minimal OSGi/Java
runtime environment in an ambient device and run any bun-
dle / any classes downloaded from remote ROCS servers.
In the next section we present our evaluation of the ROCS
architecture.

3Section 5.2 from http://tinyurl.com/javasecurity

IV. EVALUATION

We carried out many evaluations of the ROCS architecture
to show that it is both a portable and an efficient solution. We
first present the test setup we uses, then we present hard drive
storage improvements and finally we present a response time
analysis of the architecture.

A. Test configuration

We tested the ROCS framework on two different hardware
environments: the LinkSys NSLU2* and the iPaq 5550°. Both
devices share the same kind of specification:

¢ ARM CPU running at 266MHz on the NSLU2, 400MHz
for the iPaq,

e 32MB of SDRAM for memory for the NSLU2, 128MB
for the iPaq,

e« 8MB of Flash memory for the NSLU2 local storage,
48MB for the iPaq, and

o Ethernet / Wifi controllers.

We made all our tests on the NSLU2 equipment since it is
the most constrained device, but we checked portability of our
approach as we made the same tests on the iPaq equipment. It
is also worth noting that these kinds of ambient devices have
more RAM memory than storage space. As far as the software
unit is concerned, we used the following stack:

e Linux 2.6.21 kernel and GNU libc from OpenEmbedded
project®,

« JamVM 1.4.57 and both GNU-classpath 0.93% and Sun-
JREL.S classpath,

o A patched version of Apache Felix? and Concierge!”
available on demand

e A testing profile containing 13 bundles: 4 “standard”
bundles, 5 bundles to enable remote management (mosgi
package), and 4 bundles for MBean management probes
(mosgi.managedelements package). This testing
profile is detailed in table I, which gives each bundle
storage size in KB. Altogether, bundles represent a stor-
age space of 473KB.

Using two types of OSGi implementations, two hardware
equipment units and two sets of standard classes, we show
that the ROCS architecture is portable and independent from
the software stack. In the following section, we are only
considering results using Apache Felix, GNU Classpath and
the LinkSys equipment. We will now show that the 8MB local
storage capacity is sufficient to run the environment.

B. Hard drive consumption

The storage consumption must be shared between a fixed
size that corresponds to the minimal bootstrap system size
and a growing storage size that corresponds to new bundles

“http://en.wikipedia.org/wiki/NSLU2
Shttp://tinyurl.com/ipaq5550
Shttp://www.nslu2-linux.org/wiki/Development/MasterMakefile
"http://jamvm.sourceforge.net
Shttp://www.gnu.org/software/classpath/
“http://felix.apache.org

10http://concierge.sourceforge.net/

inria-00436041, version 1 - 25 Nov 2009

Bundle Size (kB)
...shell jar 50
... shell.tui.jar 11
... bundlerepository.jar 129
...log.jar 22
... mosgi.jmx.remotelogger.jar 12
... mosgi.jmx.agent.jar 99
... Mmosgi.jmx.registry.jar 13
... Mmosgi.jmx.rmiconnector.jar 83
... mosgi.console.ifc.jar 9
... mosgi.managedelements.osgiprobes.jar 11
... mosgi.managedelements.attributeaccessor.jar 5
... mosgi.managedelements.attributetester.jar 7
... mosgi.managedelements.attributeviewer.jar 15
Total 473
TABLE I

TEST PROFILE (SET OF BUNDLES)

deployment. The experiment is conducted here on the LinkSys
NSLU2 device. Table II shows the considered initial environ-
ment.

Layer Size (kB)
...0S 5 000
...JamVM runtime 500

.. Apache Felix classes 350
...Standard Classpath classes 9 000
... 13 Bundles 500
Total 15 350

TABLE 11
STORAGE PLACE USED BY A STANDARD OSGI/JAVA STACK

When using the ROCS framework, the standard classpath
is reduced to the minimal set of classes needed to boot the
entire OSGi/Java stack (2000 bytes), and the various bundles
are shadowed on the ambient device. A shadow bundle costs
about 400 bytes. Table III shows the storage we obtained with
ROCS.

Layer Size (kB)
...0S 5 000
...JamVM runtime 500

.. Apache Felix classes 350
...Standard Classpath classes 2 000
... 13 Bundles 5
Total 7 855

TABLE III
STORAGE PLACE USED BY THE OSGI/JAVA STACK USING ROCS

The fixed size is reduced from 14.850MB to 7.850MB
which is below the 8MB limitation, and 150kB is left to
install new bundles. The size of cached bundles, which is
expected to grow throughout the framework life-cycle, has an

initial size of 400 bytes corresponding to the Classpath Bundle
shadow cache. Since each shadow bundle costs 400 bytes we
can theoretically install more than 300 bundles (we have not
tested this limitation). The overall fixed gain is 48% in disk
space consumption, but if we only consider GNU Classpath,
we can ignore 67% of the classes when booting the framework
(88% with sun JREL.5). It is also important to note that the
5MB corresponding to the operating system are not optimized,
as we left many Linux management applications running for
debugging purposes, and we can still gain some storage place.
However, this out of the scope of this paper.

At this stage, the LinkSys NSLU?2 is able to boot and run a
fully compatible Java/OSGi stack as well as many bundles
managed by the ROCS server. The bootstrap and remote
classes access delays are still an issue that we investigate and
discuss hereafter.

C. Performance

Since we cache bundles on a remote server, we may pre-
sume longer startup times, and a degraded overall deployment
performance. In our tests described below, results are much
different than initially expected. They emphasize the relevance
of ROCS as a basis for building ambient environments.

We evaluated 3 durations in the OSGi/Java life-cycle. The
first one is the framework initial startup. The second corre-
sponds to bundle installation. The third one corresponds to
class loading. Finally we run the benchmark to compare the
architecture with and without ROCS. When using the ROCS
framework, the server is hosted on a PC connected to a
common 100 MB/s Fast local Ethernet network.

Starting the framework. This step occurs between the entry
of the OSGi framework’s main method and the first applica-
tion bundle is installed. Using ROCS does not impact starting
time with the Felix implementation.

Installing bundles. This step includes loading jar files on
ROCS servers, from local URL, and installing shadow bundles
on the ambient device. With JAR files on the local disk,
between 40 and 600 milliseconds are used, for bundles ranging
between 10 KB and 130 KB. With jar files on the ROCS server,
100 ms are needed, only once, to obtain a reference on the
remote RMI server, but only once. Then, between 15 ms and
20 ms per bundle are used, for bundles with the same sizes
as above. Actual measurements of these per-bundle delays are
plotted on Figure 5; we used sample bundles from the Apache
Felix source repository, with incremental sizes coming from
our testing profile. Results are similar with both the LinkSys
NLSU?2 hardware and the iPaq 5550.

Since only the meta-data are transferred over the network,
the installation of a shadow bundle with ROCS has a constant
duration (lower curve). When installing the entire bundles, the
duration is proportional to the bundle size. We also compare
the installation time of the bundles both on the local flash disk
and on an external USB storage key, and we see that the native
flash driver is very slow.

Loading classes. This step includes, for each bundle in the test
profile, loading all classes that are needed directly or indirectly.

inria-00436041, version 1 - 25 Nov 2009

Bundle installation

500 n
850
800
750
700
650
600 -
550
500 =
450 g
400
350
300 L
250
200
150

100 "
50 -l“"

0
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000
Bundle size (byies)

Installation curation (ms)

‘-— On flash -»- On USB Remme‘

Fig. 5. Time needed to install a bundle depending on its size.

Figure 6 shows the time needed to load a class, depending
on its size. Measures were obtained using specially crafted
bundles, each containing 500 classes of a fixed size (on the
z axis). Classes were loaded using Class.forName (), so
that we know when they are loaded without interferences from
potential optimizations by the Java Virtual Machine. Results
on Figure 6 are averages and mainly represent the resource
transport costs between ROCS servers and ambient devices.

Class loading performance

Class loading duration (ms)
L]

0 1,000 2,000 3000 4000 5000 6000 7,000 §000 9,000 10,000 11,000
Class size (bytes)

-m Flash (average) -& Remaote

Fig. 6. Class loading time: local vs. remote

In the standard Java classpath, around 75% of classes are
below 4 kB, which gives us a sensible estimation of common
class sizes. Using this estimation, Figure 6 shows that loading
a class is 20 milliseconds slower when we use RMI, compared
to loading it locally.

A simple benchmark. We evaluated the startup time for the
framework along with the 13 bundles from our test profile.
Measures are performed on Apache Felix with and without
using the ROCS cache server. Table IV shows how much time
is spent between starting up the framework, installing bundles
and resolving their dependencies. The last columns shows the
overall gain.

ROCS off (s) on (s) Gain (%)

Startup 1.9 1.9 0

Install 12 6.2 48

Resolve 15 15.3 -2

Total time 29 234 19
TABLE IV

ROCS BENCHMARKS

It is worth noting that our results are better than the ones
obtained on the same evaluation we made on the Concierge
[13] implementation. We see that the real gain is on the
installation time and that the transport cost is rather negligible.
OSGi on a LinkSys NSLU2 device benefits from using the
ROCS server. Of course, this stands provided the following
requirements are met: (1) local storage has a slow write
throughput (e.g. NOR Flash memory [14]), and (2) network
access is Ethernet grade, and (3) the remote server has storage
with casual PC grade access delays.

Last but not least, once classes have been loaded, the
ambient device virtual machine classes behave ‘“normally”,
meaning that there is no further performance penalty during
classes execution.

V. CONCLUSION

This article presented ROCS, a framework for running
OSGi/Java stacks on ambient devices without locally installing
the real bundles class definitions, but only shadow representa-
tives. The architecture relies on a proximity application server
that delivers the required resources. We showed that when
running the framework in a dedicated network, benefits are
obvious and standard JavaSE applications can be run.

ROCS main use-case is to enable Java/OSGi environments
for modems and set-top boxes, in the context of smart homes
and multiple home service providers. In such setup, the ROCS
server is hosted by the connectivity provider, on the DSLAM.
This equipment unit already connects and manages modems
from a small area to the operator network [15]; with ROCS
it also provides them software facilities. ROCS architecture
enables the deployment of constraint devices with a read-only
boot partition and a rather small read-write partition for the
cache part. These equipment units can store their configuration
somewhere on the Web and get their new applications in a
highly dynamic manner.

ROCS is energy-aware since only the required resources
are installed. If the costumer uses every function of a specific
application, we have the same cost as a locally installed appli-
cation would have. If a user only launches a tiny subset of the
functions, their corresponding resources won’t be downloaded:
if the user installs a PDF document viewer but does not need
printing, the corresponding functions subset is never installed
neither locally nor in memory.

ROCS architecture stresses the point of designing new
ambient operating systems as cooperations between constraint
small equipment units and remote servers.

inria-00436041, version 1 - 25 Nov 2009

ROCS architecture provides many promising perspectives
since we can make many improvements in the general ar-
chitecture. Among these improvements, we can share bundle
class delivery between many ambient devices, we can provide
a good level of privacy since shadow cache can still contain
private data, we can improve and make agnostic the transport
protocol using raw TCP or any high-level transportation, and
SO on.

One benefit on precisely managing resource downloading is
to enable real usage observation and real cost accounting since
only strictly required functions are eventually downloaded.
What we have yet to explore are smart class loaders that can
cope with networking faults. We are aware of these issues and
we are working on Delayed and Disrupted Tolerant Network
and P2P layers for efficiently accessing resources.

Finally, it is important to note that our approach could be
trivially extended to other frameworks, provided that they are
either based on component approaches, and that they use class
loading mechanisms. For instance, it can be developed for
lightweight, shared J2EE servers infrastructure.

REFERENCES

[1] 1. Sun Microsystems, “Introduction to cloud computing architecture,”
White Paper, Sun Microsystems, Inc., Tech. Rep., Jun. 2009.

[2] OSGi Alliance, OSGi Service Platform, Core Specification, Release
4, Version 4.1, 4th ed. OSGi Alliance, 2007. [Online]. Available:
http://www.osgi.org/

[3] C. Bethell, “Open source os: The future for mobile?” Juniper Research,
Tech. Rep., Jul. 2009.

[4] 1. Sun Microsystems, “J2me building blocks for mobile devices,” White
Paper, Sun Microsystems, Inc., Tech. Rep., May 2000.

[5] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, and M. Riveill,
“Lightweight Service Oriented Architecture for Pervasive Computing,”
International Journal of Computer Science Issues (IJCSI), vol. 4, no. 1,
2009.

[6] A. Courbot, G. Grimaud, J.-J. Vandewalle, and D. Simplot-Ryl,
“Application-driven customization of an embedded java virtual ma-
chine,” in Second International Symposium on Ubiquitous Intelligence
and Smart Worlds (UISW2005), S.-V. LNCS, Ed., Nagasaki, Japan,
December 2005.

[71 G. Thomas, F. Ogel, A. Galland, B. Folliot, and I. Piumarta, “Building
a flexible Java runtime upon a flexible compiler,” International Journal
of Computers & Applications, vol. 27, no. 1, pp. 27-34, 2005.

[8] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java on the
bare metal of wireless sensor devices: the squawk java virtual machine,”
in VEE '06: Proceedings of the 2nd international conference on Virtual
execution environments. New York, NY, USA: ACM, 2006, pp. 78-88.

[9] D. Rayside, E. Mamas, and E. Hons, “Compact java binaries for em-
bedded systems,” in CASCON ’99: Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative research. 1BM
Press, 1999, p. 9.

[10] Apache Harmony, “Open Source Java SE,” http://harmony.apache.org/,
2003-2008.

[11] S. Liang and G. Bracha, “Dynamic class loading in the Java
virtual machine,” in ACM SIGPLAN Conferences on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
Vancouver, Canada, 1998, pp. 36—44. [Online]. Available: http://cs-
www.cs.yale.edu/homes/liang-sheng/

[12] C. Franke and P. Robinson, “Autonomic provisioning of hosted appli-
cations with level of isolation terms,” ease, vol. 0, pp. 131-142, 2008.

[13] J. S. Rellermeyer and G. Alonso, “Concierge: a service platform for
resource-constrained devices,” in EuroSys '07: Proceedings of the 2007
conference on EuroSys. New York, NY, USA: ACM Press, 2007, pp.
245-258.

[14] T. Corp., “NAND vs. NOR Flash memory - technology overview,” April
2006.

[15] Y. Royon and S. Frénot, “Multiservice home gateways: Business model,
execution environment, management infrastructure,” IEEE Communica-
tions Magazine, vol. 45, no. 10, pp. 122-128, October 2007.

