— Author manuscript, published in "8th International Conference on Services Computing (SCC'11), Washington DC : United States
Az (2011)"

Undoing Event-Driven Adaptation of Business Processes

Sébastien Mosser, Gabriel Hermosillo, Anne-Francoise leaifVLionel Seinturier, Laurence Duchien
INRIA Lille Nord Europe — University of Lille 1 — LaboratoitdFL - CNRS UMR 8022
Lille, France — Email: {Firstname.Lastname}@inria.fr

Abstract—As business processes continue to gain relevance process. Undoing of adaptations is a topic that has been left
in different domains, dynamicity is becoming a great con- aside, but it cannot be obviated, since, as we will explain

cem. Static processes no longer cover the actual needs of i, this paper, a straight forward approach can easily lead to
constantly changing environments, and process adaptation is a
corrupted processes.

must in order to maintain competitive levels. While creating e . . .
dynamically adaptable business processes can be a challenging The objective of this paper is to present an effective
task, undoing these adaptations is a natural functionality that ~ solution to event-driven B unadaptation, by considering
has not been studied in depth. Straight forward approaches not only the event that caused the adaptation, but also the
for unadaptation can easily end up with corrupted processes, ¢ re|ated adaptations that came afterwards, leavingall t

bringing uncertainty to the whole business logic. In this paper . . .
we bring forward a solution for efficiently undoing a business unrelated adaptations untouched, in order to obtair &aB

process adaptation in event-driven environments, considering it would be if this adaptation had never happendsimilarly

also the correlated adaptations that happened afterwards. to transactional systems [7] where tfwdlback operation is
Keywords-Event Driven Approach; Business Process; Adap- used to restore a system). Using this generic and automa_ted
tation; approach, users are relieved from handling the unadaptatio
logic.
|. INTRODUCTION The rest of this paper is organized as follows. In Section

There is a huge amount of variable conditions surroundindl, we use a scenario to illustrate the motivation and chal-
today’'s business environments. The context in which outenges of our proposal. Section Il presents our approach fo
business processesKf are executed is an important factor doing and undoing Badaptations. Section IV describes how
that directly affects the way they are executed. We can ndhe actual undoing of Badaptation is achieved. In Section
longer rely on static processes, since we need to considéf, we show an implementation to validate our proposal.
these conditions and adapt our processes accordingly in oBection VI gives some related work. Finally, Section VII
der to obtain better results and maintain a competitivel leve concludes and discusses future work.

Several efforts have been made towards adding dynamicity
to Bps, showing how much this problematic matters [1]—[4].

By monitoring the context in which business processes N this section we will use a simple example to illustrate
are being executed, it is possible to efficiently respond td'0W & business process can be adapted and why undoing this
any changes in the environment and continue the proceglaptation is needed, butis not a simple and transpardnt tas
in an optimal way. Changes in the context can be seen ag Example Description

events that arrive at a specific moment in time and have . . .
We consider here a simple process, part of an online cat-

a different meaning depending on several conditiang,, | f It tains fi tiviti hich -
timing, origin, sequence. The meaning of each event cacraog software. It contains five activities, which respesiyv

II. MOTIVATION AND CHALLENGES

hal-00587660, version 1 - 21 Apr 2011

help us determine a specific situation to which we can rea) logs the user ingii) asks for user"s regues(iii) performs
by adapting the process. However, sometimes it is not e search in the_ internal databagie) d|splays_the results_
single event, but a combination of events that should trigge;[j0 thet “;‘?r ahtgd Imallfv) logs the user out. This process is
the adaptation, and this is wheGomplex Event Processing epicted In ¥G. L.

(CEP) can be used. Er is an emerging technology from ‘ '
which organizations can benefit, since it allows them to (Login }>(roquest }»{ search }(cispiay }-»{ togout

find real-time relationships between different eventsnaisi

elements such as timing, causality, and membership in a Figure 1. lllustrative business process (initial)
stream of data to extract relevant information [5].
Using Cep approaches, the reception of an eveige.g., We want to adapt this process according to the context,

a CPU overload) meet a certain condition and the system igsing an event-driven approach. Process adaptations are
then adapted [6]. But, what happens when we recei® driven by the reception of explicit events (triggered by
The condition is no longer true.€., the CPU load is back associated conditions). For example, if the search service
to normality) and we would like to go back to our original becomes unavailable, fail event will be triggered, and an

http://hal.archives-ouvertes.fr/hal-00587660/fr/
http://hal.archives-ouvertes.fr

hal-00587660, version 1 - 21 Apr 2011

monitor

adaptation will be executed to fix the problem. Precisely,

it will connect the process to a remote backup service, to ‘ s
ensure continuity for customers. We summarize As Tl the m
different adaptation rules associated to our running examp

Event Condition Action
fail search_status # ok Use a backup serve
sl ow bw < 100kbps —
cache | fail followed bysl ow Introduce a cache
per f cpu > 80% Monitor the process
Table |
EVENT-DRIVEN ADAPTATION DECISIONS Figure 4. Introducing a cache to deal with lower bandwidth

Accordingly, if the fail event is received, the business never happened’Retaking our previous example, let's say
process will be adapted to tackle this issue, and we willwe receive an eventfail*, which means that we recovered
obtain after the adaptation the process depictedi@m B. our internal search server. In this case, we no longer need
In this figure (and the upcoming ones), we represent deletethe external backup nor the associated cache mechanism and
elements withdashedlines . we can remove them.

R Naively, undoing an adaptation does not seem so compli-
......... h cated. It can be seen as removing all the changes made to
the business process that were caused byfatheevent. In
order to achieve this, the intuitive undoing action would be
to use the exact “opposite” of the used adaptation. In our
Figure 2. Consulting a backup when the search service isailnble case, it would remove the backup server and re—introduce
the internal search one. The associated process is depicted

If we then receive a performance alert by the eventFiG. 5(a). Unfortunately this process does not make sense
perf (identifying a CPU abnormal usage), we want to startin terms of business logic, as it holds the two following
monitoring the CPU consumption for all the activities in the issues: (i) the searchactivity is not monitored andii) the
process. To achieve this, we will add a monitoring activity cache mechanisms are irrelevant since the vanishing of the
after each existing activity. The resulting process isciepi backup server.
in FiG. 3.

monitor

C. Challenge: Automating Adaptation Undoing

As seen in the previous example, a straight forward
~--{—s'éé}'c}{‘;-~--(disp|ay).-- undoing of the adaptation can result in a corrupted process.
A

'''''''' To obtain a correct undoing of an adaptation, we could add
-------- an adaptation rule that changes the process to its original

state. However, this approach will only work if we consider
all the possible states of the process, given all the passibl
Figure 3. Monitoring the process to identify abnormal CPUstonption

monitor

adaptations that could happen, providing the correct [goce
for each and every one of them. This, far from being user
friendly, is virtually impossible to accomplish.

As the backup server is a remote entity, we depend on The ideal case would be to provide the user with an
the quality of the network connection to search the catalog@utomated unadaptation of the process, whenever adaptatio
Considering a bandwidth drop (identified witlswevent), — conditions are no longer met. Using this approach, we could
the cache event will also be recognized (as it is defined automatically produce a systefias it would be if this
as afail followed by aslow) and we will need to adapt adaptation had never happened3oing back to the previous
the process by adding a cache mechanism to help diminisBxample, it results in the synthesis of the process depicted
the response time of the requests. The adapted processilpsFIG. 5(b): the search activity is monitored, and the cache

depicted in FG. 4.
Hntuitively, if fail is defined assearch_status # ok, —fail is defined

B. Need for Adaptation Undo assearch_status = ok
Wh daptati dition i | t | 2Syntactically talking, the removal of the backup activitgakreates a
€n an adaptation condiion IS no longer true, we wou dhole between the cache validity test and the cache writitgite leading

like to get our proces&s it would be if this adaptation had to a corrupted process.

hal-00587660, version 1 - 21 Apr 2011

(o) (o) g
' Reposito !
} A TR

A
1
(login)--»(request}[search}»(display)~--(Iogout)
Complex
A Event

Business
Process

Processing
Engine

A\

monitor

monitor

Figure 6. Overview of the adaptation process

A. Business Processes & Actions
We define a business process P as a set of activities

(a) Inconsistent process obtained after naive unadaptatio

(montor) (moritr) ~ (monitr) ~ (menir) - (menier) acts, which implement elementary tasks, and a set of causal
g }(reqtest;‘__(se:mh)\.‘_{dis:lay)\f(Iogtut) relat.ions rels to ;chedule_ thg ac_tivity set according to a
partial order. This formalization is based on the@RrE
(b) Expected result meta—model [9] and models a subset of theeB industrial
standard [10]. For simplification purpose, we assimilate
Figure 5. Undoing adaptation-fail): a not-so—easyask an activity to itsname, without further knowledge of its

internal contents. A (binary) causal relation is definedras a

ordered pair of activitiesi.g., left andright). We denote
mechanism is not present (since its trigger event depends @asleft < right € R the fact that a relation exists between
the fail one). As a consequence, to support this automatettft andright. We depict in FG. 7 a business process and

unadaptation, we highlight the following mechanisi, its associated formal representation.
which are required to properly undo an adaptation triggered
by an event:
o M;: ldentify the undoing trigger. Based on the
description of events, the system must be able to Activit:/:és"' Fiolations
recognize their opposite, and trigger the automated RN
undoing mechanisms when relevant. ”
o Ms;: Restore the processThe current process must be
restored to what it wabeforethe reception ot. p = ({a1,a2,a3},{a1 < az,a2 < az})
« M;: Forget the correlated adaptations Adaptations T
triggered by any event which depends (immediately or
transitively) one (e.g.,the cache event depends on the Figure 7. A simple business procegsc P.
fail event) must be forgotten.
« M,: Re—execute the unrelated adaptationsAll adap- To manipulate Bs, we use an action-based approach,

tations that are independent efnust be re—executed, Since these approaches are known to efficiently support

to yield a system equivalent to the one obtained aftethe manipulation of models [11]. An elementary action is
their on—the—fly execution. defined as the addition or deletion of a model element in

a given business process. In itself, an actiois simply a
ground term that reifies the associated intentimg.(adding
an activity, deleting a relation). AB. Il lists the existing

To tackle the issues identified in the previous section, wéCtions available to modify a given business process. The
propose to automate the support of Bnadaptation. The key execution of an gctlon on a procesy is hand_led by a call
idea is to formalize the adaptation, and to rely on this fdrmat© theezec function: ezec(a, p) = p’, wherep' is a process
model to define and then operationalize the unadaptation. Weffectively modified.
consider here an event-driven adaptation engine based on

IIl. ADAPTATION: FROM “do” TO “undo”

. . Intention Notation
state—of—the—_art mechanisms [%_3], repregentedlm 5 At Add an activitya add, (a)
a coarse—grained level, the engine receives a continous flow Add a relationa < o’ | add,(a,a’)
of events from deployed sensors. According to the received 5 El’e' anl ?P“V'tya) ddlela(a),

. I n o
events, the €p engine will trigger associated adaptations, el a relationa < a’ | delr(a,a’)
stored in' an adaptation'repository. The obtainadapted . Table Ii
process is then sequentially used as input for the upcoming ACTIONS AVAILABLE TO MANIPULATE BP

adaptations.

hal-00587660, version 1 - 21 Apr 2011

Actions can be sequenced to implement complex modiconnected to the complex event processing engine, which

fications. LetA = [a4,...,a,] be a sequenéeof actions. triggers the adaptation application at runtime.
The execution ofA on a given procesg is formally defined An adaptation rule- € Ay is defined as a tuplée, o),
as follows: wheree is the CE used to trigger the adaptatigrandy is a
L= = function used to compute the action sequence to be executed
exec™ (L, p) = _ b to perform the adaptation. This action sequence is executed
’ L=[a|d] = ezect(A, exec(a,p)))

on the Br, to modify its structure and then implement the
Using this representation, the procgsdepicted in k. 7 adaptation:
can be built as the result of the execution of its associated

_ +
action sequencel,, on the empty process. Leta=(e,p) € Ap € P, e = exec™ (0(p),p)

A, = |addy(a1),add,(az),add, (a1, az), We illustrate such an adaptation imds 8. The goal of this
add,(az), add, (a2, as)] adaptation is to replace an activity by another one when the

p = exect(A,,(0,0)) e complex event is processed.g., the replacement of the
internal search by the backup server in the running example,

B. Events & Complex Events FIG. 2). The application ofp on the procesp produces a

An evente is reified as a value associated to a sensorsequence of actiond, which aims to replace the activity
e.g., the CPU load is equal to80% We use a tuple of ay by a new activitya’,. To implement this adaptation, the
terms e = (sensor,value) to represent this information. engine executes! on p, and computes as outpyt, the
Events are continuously sent to a complex event process@dapted process.
engine, in our case EsfeBased on this continuous flow,
this engine identifiescomplex eventqCEs), defined as
(i) a boolean formula applied to an (elementary) event to
process it ofii) a combination of other complex events. We
represent in AB. Ill the expressiveness associated to usual
complex events definitions. &S can be conjuctedA] or
disjuncted () using elementary boolean logic. A sequence

operator is used to introduce causality between two events @) p(p) = A () p’ = exect (A, p)
(e1;e2 means thates foolows e; eventually, even if not
immediately). Finally, a time window operator supports the A = [addq(ay),addr(a1,a3),addy (a3,a3),
wait for a given complex event for a given duratioad., del,(a1,a2),del,(az,a3),delq(az)]
€ = within(e,200ms) will be recognized if the € ¢ is
received by the engine withi200ms). Figure 8. Applying an adaptatiofx,) to p
Intention Notation Example To properly support unadaptation obP& we need to keep
EC":TOEESEZSS':Q (86"32’;;62“[“6) Sloi‘;’ifﬁiﬁg@ track of the adaptation history. This concept is expressat a
CE disjunction €1V e (error=404)V (error=503) list of tuples(e, Ac), wheree is the processed €€and A, =
CE sequence €1; €2 fail;slow [a1,...,ay] the sequence of actions computed according
Time window [within(e, At) within(-response,10s) to this event. The list is maintained in reversed order,
Table 1i the head of the history corresponds to the last adaptation.
COMPLEX EVENTS DEFINITION Considering the final adapted processgH4) associated to

the adaptation scenario depicted igcS Il, the history is
defined as follows:

C. Event—driverBp Adaptation Heo = [(perf, Apers), (slow, Asiow), (fail, Agan)]

Based on these definitions ofPB and &s, one can add
adaptability into existing business processes. To perfor
such a task, a user would define adaptation rules, an

store them into a shared rule repository. This repository is We consider here the situation depicted ir6 F9. This
situation is a formal representation of the adaptationagen

. Automating Adaptation Undoing

3We assimilate a sequence to a totally ordered iset @ list), and use textually described in &c. Il: p is the initial scenario
the notation and functions associated to lists usually emeved in the
logic programming literature [12]. A list is defined as a heéadbllowed 5We assume that a given complex eveniill trigger only one adaptation:
by a tail list 7, and is denoted as= [h|T]. The empty list isp. V(e,) € A, A€, ¢'), e = €. According to state—of-the—art engines, we

4http://esper.codehaus.org/ also assume that an adaptation is only triggered once.

hal-00587660, version 1 - 21 Apr 2011

(F1G. 1), andp,23 is the resulting adapted processgF4). « prune Considering the contents of the history, the
engine knows that the processvas adapted according
to the following sequence of event§;, ey, e3]. The
pruning step removes from this sequence the incrimi-
Defined complex eventsiey, €2, e3} nated event, and all its (transitive) dependencies (here,
Complex events combination = e1; e2 e3). In our case, the pruned sequencgeig.
ig;ep{aetﬁ’gs'ts‘g{s@’9"51)’(62"/’62)’(63’%3)} « replay. The adaptations triggered by the events con-
— p1 = emect (Aey,p), Acy = ey () tained in the pruned sequence need to be replgyed on
— p12 = exzecT (Aey,p1), Acy = ey (P1) the process. In our case, it means to agaptcording
to the rule associated 0.

— p123 = ewecT (Aey,p12), Acy = Pes(P12)
History: [(€3, Aeg), (€2, Aez), (€1, Aey)] We obtain as a result of this adaptation undoing the
processps, as represented ini&. 10.

€1 €9 €3
P p1+—pi2 — p123

Figure 9. Doing adaptatioms becomesp;2s.

Doing adaptation. The adaptation rule repository holds P 5 p1 —5 pra 2 prag — (p) po
three rules, defined with respect to three complex events: P
{€1, €2, €3}. Complex events; ande, are elementary event L
processing, ands is defined as the detection ef after pz = evec”(
the detection ok,. Based on the analysis of the incoming
elementary events, adaptations are triggered by the cample
event processing engine to adapt a given progesgve
consider here the following sequence of events:cs, and
consequentlye; (according to its definition). After these

_three adaptations, we obtal_n a processs. This Process can be operationalized. We present the different opemstion

is handl.ed through.the prewous_ly defined mechan'|sms. used to support thendo process using a functional style,
Undoing adaptation. We consider now the detection of a being consequently language independent.

complex event opposed tq (denoted as-¢;). In this new

context, adaptations that had been triggered based oo A. M;: Recognition of an Undo Triggere()

not make sense anymore, and must be undone. Consideringwe denote ag—! the Ce that triggers an undo. This event

that our objective is'to produce the system as it would g gefined as the sequence composed by the evetd

be if this adaptation had never happenedte also need jts associated opposite event. Using this definition, an

to undo all adaptations depending on(i.e., triggered by yndo will always be triggered when the engine recognizes

a complex event which combines with others, heres;). an opposite evente(g., —fail) eventually preceded by an
According to this goal, and with respect to the mechanismgyent ¢.g., fai).

M; identified in SEc. I, the system needs t() recognize
the opposite event and then trigger the undoing mechanisms
(My), (i) rewind the historic to retrieve the process as it
was before the reception of the incriminated evehf;),

(i) prune from the historic the adaptations that depend

undo

©es (P), P)
Figure 10. Undoing adaptatiop;23 becomespa

IV. “UNDO” OPERATIONALIZATION
In this section, we formally describe how the undaptation

fail ™t = fail; —fail

We represent in AB. IV the way an oposite evente is
computed with respect to an event

(immediately or transitively) on this evend4;), and finally
(iv) replay the remaining adaptations to obtain the expected
process {/1y).

Considering the example depicted inGF 9, the undo
mechanism associated tq is expected to automate the
following steps:

o recognize Assuming thate; is an arithmetic compar-
ison €.9., bandwidth < 100kbps), its opposite can
be automatically computed.€., —¢; = bandwidth >
100kbps). An adaptation needs to be undone since the

Complex Event {)

Opposite Evente)

(sensor ~ value)
€1 N €2
€1 Veg
€1; €2
within(n, e1)

(sensor oL value)
—€1 V e
—e] N\ —eg
—€e] N\ —€eg

—€1

Table IV
COMPLEX EVENTS (€) & OPPOSITES(—€)

complex event processor engine detects the event arfg: M2: Rewinding a Business Process

its opposite in sequencee., ;! = e;; e;.

The objective of this function is to restore a process as it

« rewind On the detection of; !, the system will restore was before the reception of the initial eventlt intensively
the process as it was before the detectior,0fln our relies on the history model previously defined, identifying
case, thigewind restores the process as the actions to be undorend the encountered events.

hal-00587660, version 1 - 21 Apr 2011

Undoing actions. For each kind of actiony, we present of events computed byewind (named History) and a
in TAB. Il its inversea—!. Executinga—! aftera annihilates sequence of events to be rejected (nanfkanoved, and
the introduced modificationezec(a™?, exec(a,p)) = p. initially containing the to—be-removed event), this fuowct
Considering a sequence of actiods its inverse (denoted produces aPruned sequence of events. According to our
as A~') is defined as the inverse of all actions containedobjectives, thePruned sequence contains events that are
by A, in reversed order. This approach is inspired by aspeatot related to the ones defined Removed. Its definition

unweaving techniques [13]. is represented iniB. 12
[} a T
addg(a) delq(a) A = Jai,...,an)] prune : [CE] x [CE] — [Cg]
addr(a,a’) | delr(a,a’) A1 — [a_,l ’ a L (Hist, Removed) + Pruned
delq(a) addq(a) noort Tl _
dely(a,a’) | add,(a,a’) H =0 = 0
r(a, r(a, H = [e|H]A3I € Recé
Table V prune(H,R) = = prune(H’, [¢|R])
ACTIONS () & INVERSE (o™ 1) H = [e|H]AD! €Rece
= |e|lprune(H’, R)]

Figure 12. Description of thgrune function
Function description. This operation is implemented in a
rewind function. Based on a given processhe associated
history H and the intended event this function computes
a procesg’ (representing the business procesas it was The objective of this operation is to perform process re—
before the reception of) and a list of complex events adaptationj.e., to re—execute on the rewinded process the
e, ..., ¢;] (representing all the events recognized betweerddaptations that still need to be present in the expected
the receptions ofe ande). For clarity reasons, we decouple result {.e., the adaptations triggered by the events identified
the computation off (using arestore function) from the by the prune function). This operation is described in a
identification of the encountered events (usingeatract function named-eplay, presented in 6. 13. Using a given
function). The definition of these functions, based on theProces®’ and a sequence of everjts, . . ., ¢;] as inputs, the

formalization described in&. Il is presented in Fs. 11. function produces a procegs that implements the expected
result of the undo process.

D. My: Replaying a Complex Event Sequence

rewind : P x History x CE — P X [CE]
(p,Hye) = (0, [eir--re5]) replay : P x [CE] — P
restore : P x History x CE — P @' leis-ne]) = pr
(p,Hye) — p L = 0 = p
extract : History x CE — [CE] replay(p,L) = { L ::> 7[“Ee|£l,(]1y(adapt(p, 0, L")
(H,e) = [eg,... €5
Figure 13. Description of theeplay function
H = 0 = »p
H = [(e Af)lfi’}
restore(p.He) = 2 F(Z’efAe(f?ff}ZJ]),e),e/#e V. VALIDATION & | MPLEMENTATION
= restore(exect (A, p), H',€) The unadaptation function takes as inputs the business
H = 8 Vv H = (e, A)|H'] processp, the associated historyZ and the event to un-
extract(H,e) = " - (), ALY H'), €), ¢ # € adapte. Let (p/, E) be the result ofrewind(p, H,¢), and
= [¢'lextract(H',)] pruned the result ofprune(F, [¢]). The unadapted process
rewind(p, H,e) = (restore(p, H,¢), extract(H,e)) Py 1S Obtained as the result oéplay(p, reverse(pruned)).
We implemented the complete approach using threo-P
Figure 11. Description of theewind function LOG language, to support its application on large exam-
ples. Events are sent to the adaptation engine through the
send_event s([[sensor, value],...]) command. We

C. M;: Pruning the Adaptation History consider here the scenario described iecSlI, i.e., the

The objective of this operation is to identify in a sequencereception of an errorneous status for thear ch service,
of events the ones related to the to—be-removed everibllowed by a CPU overload and a network slowdown.
(immediately or transitively), and consequently rejeanth
all (as they are now irrelevant). We defineaune function '
to support this operation. Using as inputs the sequence Svideo demonstration available here: http://bit.ly/scc11

send_events([[search_status, error], ...]).

hal-00587660, version 1 - 21 Apr 2011

% Recogni zing <EP: fail> as they focus on one kind of evernite(, service apparition

‘;;0 > 2§Li+(=a£f‘i‘d_a§bac"“gz)he- - or vanishing) where we use the definition of & drive the

% Recogni zi ng <EP: ppe}f$ ' (un)adaptation process.

% > act2 = [add_a(nml), ...] In [18], the authors propose to automate the handling of
Z‘; Reiogﬁfir(ngciﬁb- P)sl - done. model inconsistencies through the discovery of repairglan

% Recogni zi ng <EC. cache> implemented as action sequences. They demonstrate that
% > act3 = [add_a(cache?), ...] action—based approaches supporétitientimplementation
223 oZniﬁﬁEJ(f‘gtg?&af’) : h{‘érggggé- 2,668 (0. 001m) of model manipulation. FScript [19] uses actions to support
2. T ' automated rollbacki.g., only for reconfiguration failure).

o) - In [13], the authors propose an action—based approach to
The undoing is triggered with the recognition ofgail sypport the unweaving of model aspects. The underlying
event,i.e., the reception of dsearch_status, ok) event. It hrinciples are close to the ones used in this propdsal,
first triggers the rewind of the process to its original stateé the execution of inverted action sequences and the replay
Then, the pruning function removes theche event as it of remaining adaptations (in this case, aspect application
depends orfail. Finally, the replay is triggered, and the However, our approach is different as we aim to automat-
expected result (depicted ind- 5(b)) is obtained as output. jca|ly support the undoing of adaptations (without human

?- send_events([[search_status, ok]]). intervention) where aspect model unweaving is a human—
Z;z Sﬁﬁgg?LEL??eSES% ai”|°t>(fai 1> driven process. Moreover, the reification of relations lestw

% rewi nd: CEs helps us to smartly prune the encountered events and
% > exec+(invert(act3), p), then implement an accurate replay.

22 > Ziggig: Ez:“gggi i; B;i In [20], the authors present their approach for creating
% events = [cache, perf] dynamic business processes using ECA (Event-Condition-
% prune: [perf] Action) rules. They decompose the original business pgoces
22 rip'agﬁ _ Eggaf L() | structure in a set of rules. This rules are then used to ceeate
% > exec+(act4, p) ... done. Control Flow Checkingable, where the flow of the process

% => Consuned | ogi cal inferences: 1,971 (0.001ms) is defined. To adapt the process they create a new modified

?- Control Flow Checkingtable, which they compare to the

The immediate advantage of our approach is to relieve theriginal. The differences between both tables are then used
user from handling the unadaptation logic. In this examplet0 create new rules that will allow the new modifications
the recognition of the-fail CE is fully automated, based on t0 be considered during the PBexecution. To undo the
the value received through the associated sensor. The pradaptation, the new rules could just be removed, or restored
posed unadaptation function properly handles this siinati {0 their previous state. However, even though the goal of

and yields the expected business process. adaptation is accomplished, the introduction and remakal o
rules require external interactioni.g. somehow the rules
VI. RELATED WORK need to be created and fed into the system).

As stated before, dynamic adaptation has been a widely
studied topic [14]. For instance, theldic middleware [15]
is defined to support component assembly self-adaptation. In this paper we have argued thab Bnadaptation is an
Event-based AOP (EAOP) is a framework that intends to eximportant issue that should not be obviated, since naive
press aspects in terms of events that arrive during executicapproaches could end up with corrupted processes. We
[16]. They even detect sequences of events, and relate thepnesented our approach to solve this issue with a four-
usingevent patternat run-time. However, these approachesstep procedure: recognize, rewind, prune and replay. The
for adaptation are only one way, and they never consideproposed approach is generic since the detection of the undo
undoing their changes. trigger event is defined in terms of state—of-the—agrC

In [17], the authors present an aspect—oriented approadngines, and uses boolean logic to associate an event to
called WComp, a lightweight component-based middlewaréts non—event. Furthermore, our approach is also automated
to design composite Web services. They propose an aspedtideed the way Bs are unadapted is fully delegated to an
oriented approach calletispect of AssembAA) to create automatic engine. Thanks to these two advantages, we set
a composition for adaptatianiWhen a change in the context the user free from having to deal with the unadaptation logic
is detected, they create a simulation by applying all theMoreover, our four-step approach warranties that the final
AAs (implementing remaining adaptation rules) to the @liti process will be as expected: the approach considers not only
state and compare it to the actual state. Then they applthe original adaptation, but also the subsequent adapgatio
the differences by using pure elementary modifications,(addhat were related to it, and unadapts them as well, while
remove, link, unlink). Our approach is semantically diffier leaving the unrelated adaptations untouched. The obtained

VIlI. CONCLUSIONS ANDFUTURE WORK

result is a cleanly unadapted proce$as if the original

adaptation had never happenedVe validated our approach

(8]

by formalizing each step of the unadaptation procedure and

implemented the logic approach wittRBLOG.

As for future work, we are currently enhancing the pro- [9]
posed approach to support user—driven customization of the

automatically generated unadaptation trigger eventssethe

generated events could indeed be optimized according to
business knowledge. We are also working in developing aifil0]
instance level process (un)adaptation method. Since each
process instance has a context of its own, adapting or un-
adapting cannot always be performed. To correctly achieve
(un)adaptation at the instance level, we need to consider al [11]
the step of the process that the instance is running and then

adapt its process only when referring to future steps. Adso,

particular attention must be paid when loops are involved in
the instance, since in this case a previous step is also @ futu[12]
step, and these adaptations need to be managed carefully.

ACKNOWLEDGEMENTS

This work was supported by the French Ministry of

(13]

Higher Education and Research, Nord-Pas de Calais Re-

gional Council and FEDER through tt@ontrat de Projets
Etat Region(CPER) 2007-2013.

REFERENCES

(14]

(1]

(2]

hal-00587660, version 1 - 21 Apr 2011

(4]

(5]

(6]

(7]

S. S. u. Rahman, N. Aoumeur, and G. Saake, “An Adaptive
ECA-centric Architecture for Agile Service-based Business
Processes with Compliant Aspectual .NET Environment,” in
iiIWAS ’'08: Proceedings of the 10th International Conference
on Information Integration and Web-based Applications &
Services ACM, 2008, pp. 240-247.

M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou,
“VXBPEL: Supporting variability for Web services in BPEL,”
Inf. Softw. Technal.vol. 51, no. 2, pp. 258-269, 2009.

[3] A. Charfi, T. Dinkelaker, and M. Mezini, “A Plug-in Architec-
ture for Self-Adaptive Web Service Compositions,"l@BWS 17

'09: Proceedings of the 2009 IEEE International Conference
on Web Services IEEE Computer Society, 2009, pp. 35-42.

G. Hermosillo, L. Seinturier, and L. Duchien, “Creating
Context-Adaptive Business Processes, @S0G ser. Lec-

ture Notes in Computer Science, P. P. Maglio, M. Weske,[18]

J. Yang, and M. Fantinato, Eds., vol. 6470, 2010, pp. 228—-
242.

D. C. Luckham,The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise Systemg19]

Addison-Wesley Longman Publishing Co., Inc., 2001.

G. Hermosillo, L. Seinturier, and L. Duchien, “Using Com-
plex Event Processing for Dynamic Business Process Adap-
tation,” in IEEE SCC |IEEE Computer Society, 2010, pp.

466-473. (20]

P. A. Bernstein, V. Hadzilacos, and N. Goodmda®pncur-
rency Control and Recovery in Database Systemgldison-
Wesley, 1987.

(15]

[16

G. Sharon and O. Etzion, “Event-processing Network Model
and Implementation,|lBM Syst. J. vol. 47, pp. 321-334,
April 2008. [Online]. Available: http://dx.doi.org/10.1147/sj.
472.0321

S. Mosser, “Behavioral Compositions in Service-Oriented
Architecture,” Ph.D. dissertation, University of Nice, Sophia—
Antipolis, France, Oct. 2010. [Online]. Available: http:
/Inyx.unice.fr/publis/mosser:2010.pdf

OASIS, “Web Services Business Process Execution
Language Version 2.0, OASIS, Tech. Rep., 2007.
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/

CS01/wsbpel-v2.0-CSO01.pdf

X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting
Model Inconsistency through Operation-Based Model Con-
struction,” inICSE W. Schafer, M. B. Dwyer, and V. Gruhn,
Eds. ACM, 2008, pp. 511-520.

R. A. O’Keefe, The craft of Prolog Cambridge, MA, USA:
MIT Press, 1990.

J. Klein, J. Kienzle, B. Morin, and J.-M. Jézéquel, “As-
pect Model Unweaving,” inlMoDELS ser. Lecture Notes in
Computer Science, A. Schirr and B. Selic, Eds., vol. 5795.
Springer, 2009, pp. 514-530.

B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
and J. Magee, EdsSoftware Engineering for Self-Adaptive
Systemsser. Lecture Notes in Computer Science, vol. 5525.
Springer, 2009.

R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. O. Hall-
steinsen, J. Lorenzo, A. Mamelli, and U. Scholz, “MUSIC:
Middleware Support for Self-Adaptation in Ubiquitous and
Service-Oriented Environments3oftware Engineering for
Self-Adaptive Systemeol. 5525, pp. 164-182, 2009.

R. Douence, O. Motelet, and M. Siidholt, “A Formal Defini-
tion of Crosscuts,” inProceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concerpsser. REFLECTION '01. Springer-
Verlag, 2001, pp. 170-186.

] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-

Wo, E. Callegari, and M. Riveill, “WComp Middleware for
Ubiquitous Computing: Aspects and Composite Event-based
Web Services,”Annals of Telecommunicationsol. 64, pp.
197-214, 2009.

M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Bendraou,
“Towards Automated Inconsistency Handling in Design Mod-
els,” in CAISE ser. Lecture Notes in Computer Science,
B. Pernici, Ed., vol. 6051. Springer, 2010, pp. 348-362.

M. Léger, T. Ledoux, and T. Coupaye, “Reliable Dynamic
Reconfigurations in a Reflective Component Model,” in
CBSE ser. Lecture Notes in Computer Science, L. Grunske,
R. Reussner, and F. Plasil, Eds., vol. 6092. Springer, 2010,
pp. 74-92.

J. F. M. Bernal, P. Falcarin, M. Morisio, and J. Dai, “Dynamic
Context-aware Business Process: a Rule-based Approach
Supported by Pattern Identification,” iISAC S. Y. Shin,

S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung,
Eds. ACM, 2010, pp. 470-474.

