Numeéro d’ordre : 2005-ISAL-0050 Année 2005

Theése

Conception et mise en ceuvre d’un environnement
logiciel de manipulation et d’accés a des données
réparties. Application aux grilles d’images
meédicales : Le systéme DSEM /DM2.

présentée devant

L’Institut National des Sciences Appliquées de Lyon

pour obtenir
Le grade de docteur

Spécialité : Informatique
Ecole doctorale : Informatique et Information pour la Société (EDIIS)

Par
Héctor DUQUE

Master in Computer Sciences
Soutenue le 12 Juillet 2005.

Aprés avis de :

M. Vincent BRETON CR, HDR
M. Kader HAMEURLAIN Pr
M. Michel RIVEILL Pr

Devant la Commission d’examen composé de :

Examinateur M. Vincent BRETON CR, HDR

Directeur de thése M. Lionel BRUNIE Pr

Examinateur M. Kader HAMEURLAIN Pr

Directrice de thése Mme. Isabelle MAGNIN DR

Examinateur M. Jean-Francais MEHAUT Pr

Examinateur M. Johan MONTAGNAT CR

CREATIS
Centre de Recherche et d’Applications en Traitement de 1’Image et du Signal
LIRIS

Laboratoire d’Ingénierie des Systémes d’Information

Résumé

Chercheurs et médecins ont besoin d’interroger de grandes collec-
tions d1mages médicales par leur contenu plutét que seulement par leurs
meta-données (nom du patient, date, nom du médecin). De telles re-
quétes par le contenu exigent d’analyser ['mage et les "objets" wvisibles
dans 'image et éventuellement de la(les) comparer a des bases d’images
de référence ou a des atlas médicaux. Ces traitements peuvent s’avérer
extrémement codteux en terme de puissance de calcul. Dans ce cadre, les
grilles proposent un paradigme architectural trés prometteur en raison de
leur trés bon rapport performance/codt, de leur potentiel d’extensibilité,
de leur richesse fonctionnelle.

Les premiers travaux sur les grilles biomédicales ont démarré seule-
ment récemment (cf. 1ére conférence Healthgrid, Lyon, 2003). Jusqu’ici
ces travauz se sont surtout concentrés sur la gridification des algorithmes
de traitement de données (images, génome), sur le déploiement d’infra-
structures de grilles pour la biomédecine, sur la sécurité-confidentialité
des données et les problemes éthiques. Peu de travaur se sont réelle-
ment attachés a la problématique, pourtant centrale, de l'interface entre
les systemes d’information et les bases de données médicales d’une part ;
les infrastructures de grilles d’autre part.

La vision que nous défendons dans cette thése est celle de grilles
biomédicales partenaires des systémes médicauz (hopitauz), a la fois
fournisseuses de puissance de calcul et plates-formes de partage d’infor-
mations. Notre hypothése est que les données médicales resteront encore
longtemps gérées au sein des entités des opérateurs de santé. Seules des
données anonymisées (pseudomisées) dans le cadre de processus de trai-
tement dimage, d’aide au diagnostic ou d’étude épidémiologique sont
susceptibles d’étre stockées sur les dispositifs de stockage de la grille.

Dans ce cadre, cette thése propose une architecture logicielle de par-
tage dtmages médicales réparties a grande échelle. S’appuyant sur ’exis-

tence a priori d’une infrastructure de grille, nous proposons une ar-
chitecture multi-couche d’entités logicielles communicantes (DSE : Dis-
tributed Systems Engines). Fondée sur une modélisation hiérarchique
sémantique, cette architecture permet de concevoir et de déployer des
applications réparties performantes, fortement extensibles et ouvertes,
capables d’assurer [interface entre grille, systémes de stockage de don-
nées et plates-formes logicielles locales (propres aux entités de santé) et
dispositifs d’acquisition d’images, tout en garantissant & chaque entité
une mattrise complete de ses données dont elle reste propriétaire.

Sur un plan conceptuel, DSE s’appuie sur une décomposition séman-
tique et opérationnelle des applications. Cette structuration verticale (se-
lon le niveau de complezité sémantique) et horizontale (selon le type de
service fourni) définit un modéle de conception et de mise en euvre d
la fois extensible (ajout d’"outils" ou de "services"), interopérable (dé-
finitions de "drivers" transactionels ou de service), ouvert (appels a des
services externes). Elle permet également d’intégrer les grilles comme
des partenaires naturels de application, au méme titre, par exemple,
que les serveurs locaux d’images médicales.

S’appuyant sur ce modéle architectural, nous avons con cu et implé-
menté une plate-forme logicielle (DSEM-DM?) dédiée au partage d’ima-
ges médicales a large échelle. Cette plate-forme permet linterrogation
et la recherche de grandes bases de données d’images via des requétes
hybrides (c’est-a-dire intégrant traitements sur l'image et requéte sur
ses méta-données). Elle a été con cue pour permettre le déploiement des
traitements dimages sur une grille partenaire.

Des expérimentations ont été menées pour évaluer lefficacité et la
faisabilité de 'approche proposée dans DSEM-DM?. Les premiers résul-
tats obtenus sont trés encourageants.

Abstract

Due to increasing medical requirements, researchers and physicians
need to query large medical image data sets by their content, rather than
only by their associated metadata. These queries involve a vast quantity
of data analysis and require high computing power. Therefore using grid
technology arises as promising solution not only for higher performance
but also for overcoming scalability and extensibility issues.

Currently, ongoing works deal with either grid middleware develop-
ment, static and centralized medical image databases processing, spe-
cialized algorithms for querying tmages by their content, security and
confidentiality, or ethical issues. However, they partially cover the main
problem of allowing the Information Systems and Databases to interface
within a high distributed environment constituting the grid.

Our wvision, in this thesis, is the one of a bio-medical grid as a part-
ner of hospital’s information systems, sharing computing resources as
well as a platform for sharing information. Therefore, we aim at (i)
providing transparent access to huge distributed medical data sets, (ii)
querying these data by their content, and (ii) sharing computing re-
sources within the grid. Our main hypothesis is to keep the medical data
within their entities, use and store only anonymous data for image pro-
cessing, medical diagnosis, or epidemiological studies.

Assuming the existence of a grid infrastructure, we suggest a multi-
layered architecture (Distributed Systems Engines - DSE). This
architecture allows us to design High Performance Distributed Systems
which are highly extensible, scalable and open. It ensures the connection
between the grid, data storing systems, and medical platforms.

The conceptual design of the architecture assumes a horizontal defi-
nition for each one of the layers, and is based on a multi-process struc-
ture. This structure enables the exchange of messages between processes
by using the Message Passing Paradigm. These processes and messages

allow one to define entities of a higher level of semantic significance,
which we call Drivers and, which instead of single messages, deal with
different kinds of transactions : queries, tasks and requests. Thus,
we define different kinds of drivers for dealing with each kind of tran-
saction, and in a higher level, we define services as an aggregation
of drivers. This architectural framework of drivers and services eases
the design of components of a Distributed System (DS), which we call
engines, and also eases the extensibility and scalability of the DS.

The DSE architecture groups its layers in two big types : middle-
ware and application layers. The middleware layers (the first three ones)
have been implemented in a prototype (DSEM), and then used for de-
veloping a medical application (Distributed Medical Data Manager
(DM?). Our architectural framework (DSE) and its implemented pro-
totype (DSEM, DM?) have been tested in a stressing environment. The
medical problem consists on offering a Grid Service for solving queries
by-content and hybrid queries over huge datasets of medical tmages. The
wssues of concurrency, transparency and location independence have all
been addressed, and the experiment results are promising.

Acknowledgments

This work was partly supported by the European DataGrid IST project, the
French ministry ACI-GRID project, and the ECOS Nord Committee (action
C03S02).

The CNRS Rhone-Alpes, INSA of Lyon, CREATIS and LIRIS laboratories
have provided the physical and human resources in order to finish with suc-
cess this thesis.

“El hombre es esclavo de sus palabras y dueno de sus silencios.”, ano-
nimo

Table des matiéres

Résumé Etendu.
1.1 Introduction
1.2 Contexte applicatif
1.3 Etatdel’art
1.4 L’architecture DSE (Distributed System Engines)
1.5 DM? : Distributed Medical Data Manager
1.5.1 DM? : composants logiciels
1.5.2 Miseenoceuvre.
1.6 Expérimentations et évaluation
1.7 Conclusion L
Introduction
2.1 The Challenge e
2.2 Medical Data and Metadata
2.3 Medical Use Case
2.4 Distribution and Grids oo
2.5 Ongoing Work o
2.5.1 Data Grids Projects o000
2.5.2 Other Projects
253 Comments
2.6 Positioning L
2.7 Document Overview e
Related Work
3.1 Grid Technologies oL
3.1.1 Grid Middlewareo
3.1.2 Grids Related Projects L.
3.2 Distributed Computing Technologies
3.2.1 Peer to Peer Computing
322 P2PvsGrid
3.2.3 CORBA, DCOM and Java/RMI.
3.2.4 Distributed Storage oL
3.3 Images Storage
3.3.1 DICOM3 e
332 PACSand RIS

10

4 Distributed System Engines

(DSE Architecture) 72
4.1 Our Project 76
4.2 Pyramidal architectureo 76
4.3 DSE? : Message Passing Engine Layer 78
4.3.1 Message Passing Technology 78
4.3.2 Layer 0 : Definition and Structure. 79
4.4 DSE!: Transaction Layer 84
4.4.1 Driver types oL 86
4.4.2 External Applications. 88
4.5 DSE? : Distribution Layer 89
4.5.1 Components 90
4.5.2 Schemas L 92
4.6 DSE? : Application Layer 93
47 DSE*:User Layer 94
4.8 Discussion e e e e 95
4.8.1 Extensibility and Scalability 95
4.8.2 'The DSE architecture VS our Medical Image Manage Problem 96
5 Implementation 102
5.1 Sketching Our System L. 106
5.2 The Distributed System Engine Manager
(DSEM) . . . e 106
521 API Layer O 107
5.2.2 The Message Passing Kernel (MPK) 108
5.2.3 Dispatchero 110
5.2.4 Monitoring Lo 113
5.2.5 Multi Database Structure 115
5.3 Distributed Medical Data Manager (DM?) 115
5.3.1 DM2 Queries 118
5.3.2 Packages L 120
533 APILayer3 127
6 Experimentations 136
6.1 Test Environment oL 140
6.2 Performance Tests L. 142
6.2.1 Message Passing Test 142
6.2.2 Query for Retrieving an Image 143
6.2.3 Saturation Condition 145
6.2.4 Overload Condition 147
6.2.5 Random Access Pattern 148
6.3 A Medical Distributed System 152
6.3.1 Overview of the DM? system 153
6.3.2 Image Capture 154
6.3.3 Similarity 156
6.3.4 Segmentation of Cardiac Volumes 157

11

6.3.5 Second Similarity Usecase 159

7 Discussion and Perspectives 164
7.1 The DSE architecture 166
7.2 Integration of Resources 167
7.3 A Datacentric Schema 168
7.4 Images Storage e 169
7.5 Conclusion and Perspectives 169

8 Glossary, Acronyms and Definitions 172
81 DSE glossary 174
8.2 Acronyms 176
8.3 Definitions 179

9 Annexes 182

9.1 Annexe A : Machine configuration for an Engine Server at INSA Lyon 184
9.2 Annexe B : Machine configuration for an Engine Client at Cardiolo-

gical Hospital of Lyon o 0L 191

9.3 Annexe C : Access to DCMTK and CTN at Cardiological Hospital of
Lyon o e 194

9.4 Annexe D : Machine configuration for a High Performance Engine
Server at INSAof Lyon 196
9.5 Annexe E : Server Database Description 201
9.6 Annexe F : Client Database Description 205
9.7 Annexe G : Links to the Documentation 207
10 Application’s Annexes 208
10.1 Annexe I : Similarity, 210

10.2 Annexe II : 3D+time Segmentation of Magnetic Resonance Cardiac
IMAages o e e e e e 212
11 Bibliography 214
11.1 References e 214
11.2 Electronic Links 223

12

13

Table des figures

1.1
1.2
1.3
14
1.5

1.6
1.7

1.8
1.9

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
3.2
2.3
2.4
3.5
2.6
5.7
2.8
2.9
5.10
5.11

L’architecture multi-couche DSE 22
Types de transactions. Lo 24
Architecture du systéme DM2. 26
DM?2. Traitement d’une requéte hybride. 27
Exemple d’utilisation : accés a une image DICOM stockée dans un

serveur PACS 28
Hospital and Server oL 29

Mesure de similarité; de gauche & droite : image de référence puis
images similaires classées du score le plus élevé au score le plus bas.
On peut noter que l'image similaire de gauche est nettement plus

proche de I'image de référence que les deux autres. 29
Saturation. 31
Saturation du systéme L. 32
Sequence of DICOM Images. 40
DSE layers e 7
Message Passing Kernel and Processes Types 81
Message Flow. oo 83
Machines’ connection oo 85
Transactions’ typeso 86
Drivers e 88
Verticals’ view comparative of layers O, 1and 2 93
Horizontals’ view comparative of layers 0, land 2 99
Distributed System L oL 100
[lustration of two applications using the architecture 101
The Message Passing Kernel 109
The Message Passing Kernel Implementation 111
The dispatcher 113
The monitor 114
The DM? interface between the medical imagers and the grid 117
Application of a list of algorithms to an image 119
DSE? usage example : a hybrid query 130
Usage Example Lo 131
DM? Core Package v i vt i 132
Multi database structureo Lo 133
Packages (PCK) oo 134

0.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13
6.14

6.15

9.1
9.2
9.3
9.4
9.5
9.6

Package - Hospital00 134

Tool Drivers e 135
Tool Drivers Integration 135
Saturation : Using all the capacity 141
DSEMO vs PVM 142
DSEMO vs PVM. e 144
Hybrid Query : performance of each phase 145
Saturation of the System (1) 147
Overload e 148
Overload e 149
Random Source 150
Stressing the System (Normal) 151
Stressing the System (Poisson) 152
A DM? System represented as a set of DM? Server Engines and DM?

Client Engines. MRI devices are the raw data acquisition point. . . . 154
Sequence of DICOM Images 161
Hospital and Server 162

Similarity from left to right : source image and matching images with
the highest to the lowest score. The image on the left side is the most

similar to the others/ oo o 162
Example of a segmentation result using the 3-D deformable elastic

template. L 163
DM? Server Engine at INSA -Lyon 184
DM? Client Engine at Cardiological Hospital - Lyon 191
Access to DCMTK and CTN at Cardiological Hospital - Lyon 194
DM? High Performance Server Engine at INSA - Lyon 196
DM? Server Database : entity-relationship diagrams [97] [96] 201
DM? Client Database : entity-relationship diagrams [97] [96] 205

15

Chapitre 1

Résumé Etendu.

Ce résumé est destiné aux lecteurs francophones. Il vise a donner une idée globale
du contenu de cette theése. Nous prions le lecteur interessé par plus de détails de se
reporter au manuscrit en anglais.

1.1 Introduction

Chercheurs et médecins ont besoin d’interroger de grandes collections d’images
médicales par leur contenu image (présence d’objets d’intérét, textures, gradients
d’opacité, mesures de données physiques (ex : volume)) et leurs meta-données (nom
du patient, date, nom du médecin...). De telles requétes dites “requétes hybrides”
(ou “requétes par le contenu”) exigent d’analyser I'image et les "objets" visibles dans
I'image et éventuellement de la(les) comparer & des bases d’images de référence ou
a des atlas médicaux.

Ces traitements peuvent s’avérer extrémement coiiteux en terme de puissance de
calcul. Dans ce contexte, les grilles apparaissent aujourd’hui comme un paradigme
architectural trés prometteur en raison de leur trés bon rapport performance/coiit,
de leur potentiel d’extensibilité et de leur richesse fonctionnelle.

Les premiers travaux sur les grilles biomédicales ont démarré seulement récem-
ment (cf. lére conférence Healthgrid, Lyon, 2003). Jusqu’ici ces travaux se sont
surtout concentrés sur la “gridification” des algorithmes de traitement de données
(images médicales, génome...), sur le déploiement d’infrastructures de grilles pour
la biologie et la médecine, sur la sécurité (confidentialité) des données et les pro-
blémes éthiques... Peu de travaux se sont concentrés sur la problématique, pour-
tant centrale, de I'interface entre d’une part, les systémes d’information et les bases
de données médicales utilisés par les hopitaux; d’autre part, les infrastructures de
grilles.

Cette thése se propose d’étudier cette problématique.

La vision que nous défendons est celle de grilles biomédicales “partenaires” in-
formatiques des systémes médicaux (hopitaux), a la fois fournisseuses de puissance
de calcul et plates-formes de partage d’informations. Notre hypothése est que les
données médicales resteront encore longtemps gérées au sein des systémes informa-
tiques des opérateurs de santé. Seules des données anonymisées (pseudonimisées),
ou des données cryptées, dans le cadre de processus de traitement d’image, d’aide

16

au diagnostic ou d’études épidémiologiques, seront susceptibles d’étre copiées sur les
dispositifs de stockage de la grille.

Dans ce cadre, cette thése propose une architecture logicielle de partage d’images
médicales réparties a grande échelle. S’appuyant sur l'existence a priori d’une in-
frastructure de grille, nous proposons une architecture multi-couche fondée sur la
définition et la mise en place d’entités logicielles communicantes (DSE : Distributed
Systems Engines). Proposant une modélisation hiérarchique sémantique, cette archi-
tecture permet de concevoir et de déployer des applications réparties performantes,
fortement extensibles et ouvertes, capables d’assurer I'interface entre grille, systémes
de stockage de données, plates-formes informatiques hospitaliéres et dispositifs d’ac-
quisition d’images, tout en garantissant a chaque acteur une maitrise compléte de
ses données dont il reste le seul propriétaire.

Sur un plan conceptuel, I’architecture DSE s’appuie sur une décomposition sé-
mantique et opérationnelle des applications. Cette décomposition verticale (selon le
niveau de complexité sémantique) et horizontale (selon le type de service fourni)
définit un modéle de conception et de mise en ceuvre a la fois extensible (ajout
d’"outils" ou de "services"; définition de "drivers" transactionels) et ouvert (ap-
pel a des services externes). Elle permet également d’intégrer les grilles comme des
partenaires naturels de ’application, au méme titre, par exemple, que les serveurs
locaux d’images médicales.

S’appuyant sur ce modéle architectural, nous avons concu et implémenté une
plate-forme logicielle (DSEM-DM2) dédiée au partage d’images médicales a large
échelle. Cette plate-forme offre des fonctionnalités d’interrogation de grandes bases
de données d’images via des requétes hybrides. Sur un plan opérationnel, elle a été
congue pour permettre le déploiement des traitements d’images associés aux requétes
sur une grille partenaire.

Des expérimentations ont été menées pour évaluer I'efficacité et la faisabilité de
I’approche proposée dans DSEM-DM2. Les premiers résultats obtenus sont tout a
fait encourageants.

Ce résumé étendu, qui reprend la structure du manuscrit rédigé en anglais com-
porte 6 chapitres outre cette introduction. La section 1.2 décrit les cas d’utilisation
cibles de cette thése, sur lesquels nous nous appuierons pour valider I'applicabilité
des concepts et outils proposés. La section 1.3 présente 1’état de 'art des technologies
et domaines de recherche connexes & nos travaux : intergiciels' de grille, technolo-
gies d’intégration de services répartis, dispositifs de stockage d’images. La section
1.4 présente I'architecture DSE. La conception et 'implémentation de la plate-forme
DSEM-DM2 sont étudiées du section 1.5. Les tests de performance que nous avons
menés ainsi qu’un scénario d’utilisation de la plate-forme DSEM-DM2 sont présen-
tés et analysés section 1.6. Une discussion de nos propositions en regard des cas
d’utilisation cibles et de I’état de I'art ainsi que les principales perspectives a ces
travaux concluent ce document de synthése.

! Intergiciel est la traduction la plus couramment admise du terme anglais Middleware.

17

1.2 Contexte applicatif

De nombreuses applications médicales utilisent des requétes par le contenu : aide
au diagnostic, suivi des patients, épidémiologie, formation médicale. .. Pour illustrer
les problématiques mises en ceuvre, nous considérerons le cas d’utilisation suivant.

Un cardiologue, dans le cadre du diagnostic d’un patient, recherche des images
cardiaques d’autres patients du méme age, pour lesquels un diagnostic a été confirmé,
similaires a celles de son patient, c’est-a-dire, de maniére plus précise, des images
présentant une “fraction d’éjection”? supérieure 4 0,5. Les images sélectionnées seront
classées en fonction de leur degré de similarité. Le cardiologue pourra alors choisir les
images qui I'intéressent le plus, les visualiser ainsi que le dossier médical des patients
concernés (diagnostic, protocole thérapeutique mis en ceuvre. . .). Ces dossiers seront
anonymisés si le cardiologue n’est pas le médecin traitant des patients concernés.
Enfin, le cardiologue rédigera son diagnostic qui sera intégré au dossier du patient
et stocké dans la base de données avec ’examen (images) du patient.

Fonctionnellement, exécuter cette “transaction” nécessite :

— d’exécuter des requétes sur des bases réparties de metadonnées médicales (age
du patient, fraction d’éjection lorsqu’elle est connue) ;

— de pouvoir accéder aux systémes de stockage d’images et de dossiers médicaux
distribués sur différents hopitaux;

— d’exécuter des traitements d’images complexes sur les images potentiellement
pertinentes (calcul de la fraction d’éjection lorsqu’elle n’est pas connue) en
quasi temps réel (temps de réponse de quelques secondes). Ceci impose d’étre
capable de mobiliser une grande puissance de calcul. Notre proposition est,
pour ce faire, d’utiliser les ressources d’une grille partenaire ;

— d’anonymiser des données confidentielles ;

— de mettre a jour le dossier médical du patient et d’archiver les images du
patient dans un systéme ad hoc.

L’objectif de cette thése est, sur un plan théorique, de proposer un cadre mé-
thodologique et architectural & méme de gérer des applications présentant de telles
exigences fonctionnelles; sur un plan applicatif, de développer un prototype, fondé
sur cette approche, afin d’évaluer la faisabilité de nos propositions.

Cette thése d’intégre dans les projets ACI Grid Medigrid (étude de l'utilisation
de grilles de calcul pour le traitement d’images médicales), Ragtime (projet rhone-
alpin visant a déployer une grille biomédicale & I’échelle de la Région), Datagrid et
EGEE (projets européens IST de grille a 1’échelle européenne.)

1.3 Etat de ’art

Nos travaux se situent a ’intersection des grilles de calcul, du développement et
de l’intégration de services et composants répartis, du stockage de données et du
traitement d’images médicales. Nous proposons donc dans le manuscrit une revue
des principaux travaux et projets dans ces domaines.

2La fraction d’éjection désigne la fraction du flux sanguin pompée par le ventricule gauche &
chaque pulsation.

18

Les intergiciels de grille peuvent étre classés en trois grandes catégories en fonc-
tion de leurs cibles applicatives, de I'infrastructure de calcul et de celle de partage
de données sous-jacente [4] :

1. Les intergiciels de grille orientés calcul (Computational grids) : ces intergiciels
(Globus dans ses premiéres versions [14], Legion [128] [62], Unicore [165] [65],
etc.) visent principalement a permettre ’exécution de calculs paralléles com-
plexes sur des dispositifs de traitement intensif (clusters, supercalculateurs. . .)
répartis & grande échelle. Les données manipulées dans ces calculs sont stockées
sur la grille. L’attention est notamment placée sur ’'ordonnancement de taches
et la réplication des données. Les utilitaires de manipulation de données ainsi
que les mécanismes de gestion de la confidentialité et de partage d’information
(metadonnées) sont généralement assez basiques.

2. Les intergiciels de calcul global (Scavenging grids) : ces intergiciels (Condor
[127], BOINC [202], etc.) permettent d’exécuter des codes faiblement couplés,
voire non couplés sur un ensemble potentellement trés important d’ordina-
teurs personnels ou de stations de travail (on parle aussi d’“Internet compu-
ting”) dont on utilise les cycles de calcul laissés disponibles par les applications
s’exécutant sur ces machines.

3. Les intergiciels de grille orientés données (Data grids) : ces intergiciels (Globus
[129], SRB [166], DataGrid [126], etc) mettent ’accent sur la gestion de données
partagées au sein de communautés virtuelles. Ils proposent des fonctionalités
de gestion de grands volumes de données réparties a grande échelle (indexation,
réplication, sécurité, cache...).

Notre objectif n’est pas de proposer un nouvel intergiciel de grille ni méme d’ap-
porter de nouvelles fonctionnalités a un intergiciel existant. Nous faisons I’hypothése
(réaliste au moins & moyen terme) de I'existence d’infrastructures (matérielles et lo-
gicielles) de grille accessibles aux acteurs d’un réseau de santé ou d’une communauté
d’utilisateurs médicaux. Sous cette hypothése, notre objectif est de proposer une ar-
chitecture et les outils logiciels nécessaires a la connexion des systémes informatiques
de ces utilisateurs a la grille. Par connexion, nous entendons la possibilité d’utiliser
les services proposés par la grille : exécution de calculs, partage d’information, au-
thentification, réplication... Il est donc important de bien analyser les intergiciels
de grille, leurs fonctionnalités et leur structure, afin d’étre capable d’interagir et de
s’interfacer de maniére efficace avec ces intergiciels.

L’intergiciel de grille le plus utilisé aujourdhui est sans conteste le Globus Toolkit
[129] [14]. Initié en 1996, Globus vise dans ses versions 3 et 4 le déploiement de grilles
a grande échelle multi-institutionnelles. Globus est congu autour d’une architecture
en couches intégrant des services (conformes & WSRF dans la version 4 de Globus)
hiérarchisés en fonction de leur portée (de la ressource de calcul a la communauté
virtuelle). Globus offre une pallette d’outils et de kits de développement trés large.

L’évolution des différentes versions de Globus illustre bien le processus de nor-
malisation vers lequel convergent les intergiciels de grille. En effet, aprés une époque
de “bouillonnement” durant laquelle chaque intergiciel était concu comme un logi-
ciel “propriétaire”, le GGF (Global Grid Forum) a proposé de mettre en place un
standard de développement de composants de grille. OGSA (Open Grid Services

19

Architecture)[162] [58] s’appuie ainsi sur la normalisation d’une infrastructure de
services de grille de base (OGSI : Open Grid Services Infrastructure, chargée en
particulier de la création, du nommage, de la destruction des services) et sur la spé-
cification de normes et conventions d’interopérabilité entre services permettant & un
programmeur d’interfacer ses développements avec un intergiciel existant.

Encore plus récemment, WSRF (Web Service Resource Framework) [59] propose
une infrastructure proche de ’architecture de services d’OGSI mais en se fondant sur
les normes et constructions logicielles développées dans le cadre des Web services,
dans une convergence des technologies de service de grille et de service Internet.

Outre Globus, on peut également citer parmi les principaux intergiciels de grille
Condor [127], environnement utilisé depuis la fin des années 80 pour des applica-
tions de calcul global. Condor permet de gérer de trés grands volumes de données
dans le cadre d’applications impliquant des codes faiblement couplés appliqués a des
flux de données importants. Un portage de Condor au-dessus de Globus (Condor-
G) a récemment été réalisé [62]. Legion|63] propose un systéme d’exploitation de
grille orienté-objet. Processeurs, périphériques de stockage, ressources matérielles
ou logicielles sont modélisés comme des objets a partir desquels le programmeur va
construire son application. Legion fournit des mécanismes d’adressage et de gestion
de ces objets dans une vision globale unique de I’ensemble des ressources présentes
sur la grille. Citons enfin, parmi les intergiciels orienté calcul, Unicore [65] qui,
s’appuyant sur une architecture 3-tiers, propose un environnement sécurisé d’exécu-
tion de codes répartis offrant notamment des fonctionnalités de migration de taches.
D’autres intergiciels per se (Gridbus, SRB) sont analysés dans le corps du manuscrit.

Orienté vers I'intégration de données réparties, SRB (Storage Resource Broker)|166]
est un intergiciel client-serveur fournissant un accés uniforme a des ressources et pé-
riphériques de stockage variés dans le cadre d’environnements de calcul hétérogénes.
SRB supporte des systémes de stockage comme HPSS (cf. ci-dessous) ou des sys-
témes de gestion de bases de données. SRB organise les données sous la forme de
collections hiérarchiques et implémente des mécanismes d’association nom logique-
adresse physique des données.

S’appuyant sur ces intergiciels de grilles, nous décrivons dans le corps du ma-
nuscrit plusieurs projets d’infrastructures de grille représentatifs des axes de déve-
loppement actuels (Datagrid, Egee, Eurogrid, IPG, K*Grid, Crossgrid, DCGrid).
Nous analysons également les principaux projets d’environnements haute perfor-
mance pour l'imagerie médicale (Mammogrid, e-Diamond, Dismedi, Camaec, med-
Gift, CasImage, Ptm3D, Aquatics, Irma, Assert). Nous renvoyons le lecteur au cha-
pitre Etat de I’art du manuscrit pour I’étude de ces projets.

Situés a l'interface entre les grilles et les systémes répartis, nos travaux s’ins-
crivent naturellement dans le champ des environnements d’intégration de services
et de calcul réparti. Plusieurs technologies sont aujourd’hui disponibles. Citons no-
tamment CORBA, DCOM, Java/RMI, MDA /OMA [191] . Le composant central de
CORBA[134] [104] est 'ORB (Object Resource Broker). L’ORB fournit I'infrastruc-
ture de communication entre les objets manipulés : identification, localisation, trans-
fert de données. CORBA normalise également un langage de description d’interfaces
qui permet de spécifier les API des méthodes mises a disposition par les applica-
tions et services. DCOM[192] [100] offre des mécanismes de communication inter-

20

domaine & des composants logiciels Microsoft COM. Java/RMI (Remote Method
Invocation)[193] permet d’invoquer des méthodes s’exécutant sur des machines vir-
tuelles Java distantes via des mécanismes de sérialisation d’objet. Enfin, MDA /OMA
(Model Driven Architecture/Object Management Architecture)[191] s’appuie sur un
ORB CORBA pour modéliser et déployer des applications multi-composants.

Ces environnements et intergiciels offrent des outils puissants d’interopérabilité
au niveau programmation. Par contre, vis-a-vis de nos applications-cibles, ils se
situent & un niveau opérationnel trés bas et n’offrent pas de formalisme architectural
adapte a la structure effective de ces applications. Trés génériques et découplés de
notre contexte applicatif, ils ne permettent pas d’appréhender I'organisation logique
et fonctionnelle des applications médicales cibles de nos travaux. Ils offrent par contre
des outils utilisables pour I'implémentation des mécanismes de communication et
d’interopérabilité inter-processus.

Enfin, nous proposons dans le corps du manuscrit une revue des systémes de sto-
ckage réparti : systémes de fichiers répartis, systémes de stockage hiérarchiques (Cas-
tor, Endstore, Eurostore, HPSS), systémes d’archivage d’images médicales (PACS) ;
nous décrivons également (de maniére suscinte) le standard de description et d’échange
d’images médicales DICOM3. En effect bien que nos travaux se situent dans des
champs de recherche différents, nous sommes cependant appelés a utiliser des sys-
temes de stockage de données et & manipuler des images médicales. Il nous est donc
apparu nécessaire de donner au lecteur du manuscrit les élements fondamentaux de
ces technologies, indispensables pour situer le contexte applicatif de nos travaux.

1.4 L’architecture DSE (Distributed System Engines)

L’objectif de nos travaux est de fournir un cadre architectural modélisant des ap-
plications complexes (cf. cas d’utilisation décrit plus haut) faisant intervenir d’une
part une grille, agissant comme support de calcul, de partage d’information et de
mécanismes d’authentification ; d’autre part des sites (ex : hopitaux) membres d’une
communauté virtuelle gérant des données multimédias complexes sensibles. Dans le
cadre de notre application-cible, ces données sont issues d’imageurs (tomodensito-
métres X (scanners), IRM, etc.) ou de dossiers médicaux. Elles sont gérées dans des
systémes d’archivage d’images médicales (PACS) et des SGBD et soumises a des
contraintes de confidentialité trés strictes. En ce sens, il n’est pas envisageable de
les copier (sans anonymisation) sur la grille en vue d’un partage au sein de la com-
munauté des utilisateurs. Les traitements-cibles sur ces données sont des recherches
par le contenu dans les bases d’images.

Notre hypothése de travail est de laisser les données dans les systémes internes
aux sites partenaires. Cette hypothése se justifie par la nécessité de maintenir la
confidentialité des données, par la difficulté conséquente d’obtenir les autorisations
administratives nécessaires, par ’exigence d’une cohérence trés forte, permanente,
des données (difficile & mettre en place dans le cadre d’une grille), par la forte
localisation des accés (la plupart des demandes de lecture des données d’un patient
proviennent de I’hdpital ou il est soigné).

Ceci impose de mettre en place au niveau de chaque site partenaire (désigné dans

21

la suite sous le terme générique d’hdpital) une infrastructure logicielle “passerelle”
(appelée dans la suite DSE : distributed system engine) entre le réseau local et la
grille. Cette infrastructure passerelle doit permettre les flux de requétes et de données
de la grille et des autres hopitaux vers I’hopital local et réciproquement de I’hopital
vers la grille et les autres hopitaux. Elle doit également permettre 'intégration de
services variés : traitement d’images et indexation, bases de données, caches de
requétes et de données, controle d’accés, anonymisation, PACS. ..

Nous proposons de modéliser et de structurer un DSE en composants fonction-
nels hiérarchiques (figure 1.1). Chaque couche hiérarchique correspond & un niveau
sémantique, des processus jusqu'aux interfaces utilisateur.

Le niveau DSE? (échange de messages) désigne le niveau des processus. S’exécu-
tant localement, ces processus communiquent entre eux via des mécanismes d’échange
de messages fournis par un noyau de communication. Le niveau DSE! (transaction)
correspond au traitement de requétes complexes. Le traitement d’une requéte hy-
bride, par exemple, exige ’exécution d’un nombre important de processus (controle
d’acces, cache, connexion a la base de metadonnées, connexion au PACS, traitement
d’images, monitoring et tragabilité, etc.), qu’il faut donc savoir décrire et coordon-
ner : c’est le role de ce niveau. Le niveau DSE? concerne l'exécution de requétes
réparties sur plusieurs DSEs. Enfin, les niveaux DSE? et DSE* représentent les in-
terfaces applicatives (API) et utilisateur (portail, interface graphique...).

DSE4: user /\

DSE3: application
DSE2: distribution
DSE1: transaction

Level

Semantic

DSEO: message passing

Fi1a. 1.1 — L’architecture multi-couche DSE

DSE? : échange de messages

A la base de tout applicatif réparti se trouvent des processus communicants.
Le cceur de DSE? est donc constitué d’un noyau logiciel d’échanges de messages
(MPK : Message Passing Kernel). Ce noyau est chargé de fournir des mécanismes
efficaces d’échange de données entre les processus s’exécutant dans le DSE. Rap-
pelons qu'un DSE peut étre constitué d’un ensemble de serveurs et d’applications
répartis sur une entité locale d’administration (typiquement, le réseau local d’un
hopital). Le MPK est notamment chargé du routage et de la gestion des communi-
cations ainsi que de la communication avec 1’extérieur (grille, réseau métropolitain,
Internet...). Différentes approches sont envisageables, notamment 'utilisation de li-
brairies d’échanges de messages (type PVM ou MPI) et 'utilisation de services
de communication inter-processus (IPC) internes au systéme d’exploitation. Nean-
moins, l'utilisation de librairies telles que PVM (orientée multi-plateforme) ou MPI

22

(offrant des fonctionnalités d’échange de messages avancées), d’un coit d’exécution
élévé, ne s'impose d’évidence pas lorsque les processus sont localisés sur une méme
machine ou sur un réseau homogéne, en raison du surcotit qu’elles entrainent.

DSE! : transactions

Les processus du niveau 0 peuvent étre assemblés pour constituer des transac-
tions. De maniére classique, une transaction est constituée de sous-opérations. Une
transaction doit verifier les propriétés ACID : Atomicité, Consistance, Isolation et
Durabilité[1]. En terme d’applicatif-cible, une transaction correspond par exemple
a l'exécution d’une requéte hybride locale dont on a vu plus haut qu’elle pouvait
impliquer de nombreux processus.

Nous proposons de formaliser trois types de transactions (figure 1.2) : les Queries,
les Tasks et les Requests®. Conceptuellement, une Query est constituée d’un ensemble
de Tasks et de Requests pouvant étre exécutées en paralléle ou séquentiellement.
Les Tasks sont constituées d’un ensemble de Requests s’exécutant en paralléle ou en
séquence . Enfin, les Requests exécutent des actions simples via I’échange de messages
avec des serveurs internes & 1’hopital ou distants, éventuellement accesibles via la
grille.

De maniére plus illustrative, on utilisera par exemple une Request pour modéliser
un acces a un service de bases de données. La Request sera ainsi chargée de gérer
la connexion avec le SGBD, de transmettre la requéte dans un format adapté (on
n’utilisera pas la méme Request selon la base de données considérée), de récupérer
les résultats et éventuellement de les transformer dans un format spécifique.

Les Tasks offrent des possibilités de parallélisme (figures 1.2i et 1.2ii) et de ré-
partition. Une Task peut étre modélisée, par exemple, pour décrire le mécanisme
d’accés a un fichier image. En entrée, la Task ne dispose que d’un identifiant lo-
gique. Son role est alors, a I'aide de cet identifiant, de récupérer une copie de I'image
aussi efficacement que possible. La Task peut étre ainsi amenée a vérifier la présence
de 'image dans un cache, & récupérer I'image dans un PACS local, ou & contacter
le service d’information de la grille pour localiser le fichier image puis soumettre un
job de transfert de fichier a la grille. Enfin, au niveau sémantique le plus élévé, les
Queries modélisent les transactions applicatives les plus complexes impliquant des
protocoles avancés, telles que ’exécution d’une requéte par le contenu.

Nous proposons d’introduire un dernier type de transaction, les Tools. Les applicatifs-
cibles sont amenés a utiliser des services génériques, indépendants de ’applicatif,
chargés de fonctions globales au DSE ou transversales a plusieurs applications. Ci-
tons par exemple les services de cache de données, de monitoring, de contrdle d’acces,
de traitement d’images... Ces Tools indépendants de I'applicatifs peuvent étre accé-
dés par les Queries, les Tasks et les Requests.

Afin de distinguer les processus de niveau 0 des processus implémentant des
transactions, nous appelerons ces derniers des Drivers (on parlera ainsi de Query
driver (QUD), de Task driver (TKD), de Request driver (RQD) et de Tool driver
(TOD).

3Nous maintenons la terminologie anglophone afin de garder une cohérence entre ce document
de synthése et le manuscrit en anglais.

23

query (QU) | task (TK) request (RQ) |

i
=

@
/N N
v |
>@@@ !
ANV l

F1G. 1.2 — Types de transactions.
(i) Query, (ii) Task, (iii) Requests.

Ainsi, de maniére opérationnelle, lorsqu’un DSE recoit un message porteur d’une
requéte hybride : (i) Le message est transféré au Query driver concerné qui lance
aussitot une requéte (query), (ii) La requéte démarre différentes tiches concurrentes
(ex : acceés a un fichier image local et au dossier patient associé) via des Task dri-
vers différents, (iii) Pour s’éxécuter, chaque tache fait appel aux Requests drivers
pertinents (ex : accés aux images) (iv) Les Request drivers ouvrent des connexions
et échangent des messages avec les services concernés (ex : PACS), (v) Les drivers,
dans leur exécution et quel que soit leur type, font appel aux Tools fournis par la
plate-forme DSE (ex : cache de données). Nous renvoyons le lecteur au section 1.2
pour un exemple plus détaillé.

DSE? : Distribution

Le niveau DSE? (Distribution) apporte des fonctionnalités d’exécution répartie :
localisation des données et des services, transferts de requétes, collaboration entre
DSEs... Ce niveau a naturellement vocation & s’interfacer avec les services de la
grille. C’est en effet le role des intergiciels de grille de fournir ce type de mécanismes
et de services. Dans des contextes applicatifs différents sans infrastructure de grille,

24

ce niveau de distribution peut étre implémenté via des mécanismes de type pair-a-
pair décentralisé ou le déploiement de services d’annuaires (LDAP par exemple) ad
hoc.

De nouveaux composants sont définis & ce niveau, tels que les SDA (Service
Daemons) et les SDR (Service Drivers). Ces composants, construits au-dessus de
ceux du niveau DSE!, permettent de gérer 'accés aux services distribués offerts par
I’application, leur coordination et leur interoperabilité.

Niveaux supérieurs

Le niveau DSE? (Application) définit un DSE comme un ensemble de services
accessibles via des interfaces de programmation (API). Un service de ce niveau est
une entité fonctionnelle indépendante utilisable par des applications. Une application
est définie ainsi comme un ensemble de services coordonnés répartis sur des DSEs
disséminés sur la grille (ou le réseau).

Enfin le niveau DSE* (Utilisateur) définit les modes d’interaction de 'utilisa-
teur avec ’application (saisie des informations (ex : interfaces graphiques, portail),
procédure d’authentification, connexion au systéme. . .)

Synthése

L’architecture DSE propose un formalisme de modélisation d’applications répar-
ties complexes. Ce formalisme suggére de structurer les applications selon une ar-
chitecture fonctionnelle hiérarchique. Par sa versatilité et son adaptabilité, DSE est
particuliérement bien adapté a des grilles biomédicales qui impliquent des serveurs
de données et de traitement trés divers, sensibles en terme de sécurité, relativement
cloisonnés (peu intégrés) et situés au-dela de la frontiére de la grille. Par sa démarche
analytique, DSE incite les programmeurs a définir des composants génériques (noyau
au niveau 0, drivers et tools au niveau 1, services aux niveaux 2 et 3) réutilisables
et facilement adaptables pour s’intégrer dans plusieurs applications.

1.5 DM? : Distributed Medical Data Manager

Nous avons développé un prototype fondé sur DSE pour valider nos propositions
et vérifier la faisabilité (en terme de performance et de fonctionnalités) d’un systéme
de requétes par le contenu réparties fondé sur 'utilisation d’un intergiciel de grille.
La figure 1.3 illustre le positionnement de DM? 3 I'interface des serveurs de données
hospitaliers et de la grille.

1.5.1 DM? : composants logiciels

DM? est composé (figures 1.4 et 1.5) d’un ensemble de request drivers (RQD)
chargés de la connexion aux services de la grille; d’'un DICOM request driver chargé
de l'interface avec le serveur d’images médicales DICOM de I’hopital ; d'un request
driver chargé de la connexion au SGBD stockant les métadonnées décrivant les
images.

25

M etadata manager
LFN [paramq| - | parn| --

MSS

/% | DM 2 | Grid Middleware
~ @ :Encryption - Replica
|
: Header Manager
DICOM ! blanking SE interface SE interface
Server -
: Job
7_/ | Submission |~ VT
\\ |
|
|
|
|
|
|
|
|

!) v
! Service

:
: Grid

Imagers

F1G. 1.3 — Architecture du systéme DM?2.
SE : storage element, LFN : logical file name

Chacun de ces request drivers est associé a un task driver (TKD) pour permettre
une parallélisation des demandes. Le DICOM task driver est ainsi capable de trans-
férer plusieurs images DICOM simultanément.

Au niveau DSE?, un démon de communication recoit les messages émanant de la
grille et lance I'exécution des requétes. Ce démon est également chargé de la gestion
de la charge du serveur d’images (gestion de files d’attente si le serveur atteint sa
capacité-créte). DM? stocke provisionement les images dans le “scratch space” avant
de les transférer (éventuellement aprés anonymisation) vers la grille.

1.5.2 Mise en ceuvre

Reprenons le cas d’utilisation décrit en section 1.2.

Les figures 1.4 et 1.5 illustrent la mise en ceuvre de la requéte du cardiologue.

Tout d’abord, le cardiologue envoie une requéte (pour trouver 'IRM de Mon-
sieur X acquise la veille dans ’hopital) a l'aide de Dinterface utilisateur DM?. Le
DM? Query Driver (QUD) envoie la requéte a 'interface de la grille pour aller
interroger le grid service de métadonnées. Cette requéte d’interrogation est assem-
blée et envoyée sur la grille grace aux Metadata Request Driver (RQD) et Metadata
Task Driver (TKD). Les autorisations d’accés de l'utilisateur aux données sont vé-
rifiées par le systéme de sécurité (Security Tool Driver (TOD)) (étape 1 de la figure
1.4a)) ; I'identifiant logique du fichier du patient ainsi que les métadonnées qui lui
sont associés (modalité d’imagerie, région d’intérét, séquence dynamique, paramétres
d’acquisition IRM, etc.) sont, une fois retournés par le service de métadonnées de la
grille, renvoyés & 'interface utilisateur via le DM2? QUD.

Une requéte est ensuite effectuée pour trouver toutes les images (étape 3 de
la figure 1.4b) similaires a I'image IRM d’intérét (méme région du corps, méme

26

modalité d’acquisition...) et pour lesquelles le diagnostic médical est connu. La
couche 2 de DM? est utilisée dans ce cas pour distribuer les requétes sur tous les
hopitaux équipés de services de métadonnées a ’aide du DM? RQD et du Metadata
TKD. Les identifiants logiques de toutes les images correspondant aux paramétres
du fichier source du patient sont alors renvoyés aux utilisateurs

| GRID | | DM2API |

| | Q teplipg
1 v DM2 QUD 1

1 P y A 4
‘1
él’ ' pR
/ ~
Security TOD / ~o
1 2
/

I
I

- I

(I RN
I

I

I

/
cachetop 1/ N
<!
1 Metadata TKD

o -

2 teplip

Q\L)M etadata RQD

(a)

teplip g
DM2 QUD I

GRID TKD

pc
- Em EE B B B o o

Metadata TKD
. teplip a--""

yl
DMZRQDC\[/D GRID RQDQ\L) (\-1/>Metadata RQD

|an01her DM2| | GRID | | Metadata

(b)

FI1G. 1.4 — DM2. Traitement d’une requéte hybride.
(a) 1-Test de Securité 2- Vérification de la présence du fichier image patient dans le cache, (b) 3-
Une requete distribuée est envoyee pour trouver toutes les images similaire a l’image patient, 4- le
calcul des mesures de similarite est exécuté sur la grille.)

Une autre requéte est alors construite et envoyée pour le calcul des mesures de
similarité |28, 27| entre 'image du patient et chaque image résultant de la requéte
précédente (voir étape 4 de la figure 1.4b). Le service de soumission de jobs du midd-
leware de la grille est utilisé pour distribuer le calcul sur des nceuds disponibles. Pour

27

chaque tache lancée, le grid replica manager declenche un processus de recherche des
fichiers nécessaires dans toute la grille (a 'aide des identifiants logiques récupérés a
’étape précédente). Si les fichiers ne s’y trouvent pas, la grille les demande au DM?
concerné (qui peut étre différent du DM? initial). Ce DM? éventuellement distant
interroge son serveur local d’images DICOM, assemble les images IRM a la volée
dans un buffer et renvoie les images a la grille.

GRID DM2 API

|

I Q tcp/ip|g
DM2QUD
' = L 3 I
T T |@O
7 SO T~a v
Image TOD 1/ 1 N -.5 ””'(l DICOM TKD
/ S ksl -
I // i ,\\\\/// AI®
1/ 3 - AR 4
) w1 GRID TKD
cacheton 17 Pt SN
- e .7 -
O<—" A
e ,/ / I Metadata TKD
o. teplip)

DICOM RQDQ GRID RQD(\L) (\L)Metadata RQD

DICOM GRID Metadata

F1G. 1.5 — Exemple d’utilisation : accés & une image DICOM stockée dans un serveur
PACS

La figure 1.5 détaille cette opération. En haut, le middleware de la grille dé-
clenche une requéte DM? pour récupérer une image : (1) Il demande tout d’abord
I'image au Cache TOD. (2) Si cette image n’est pas disponible, il cherche alors dans
la base de données (Metadata TKD) pour localiser les fichiers DICOM & partir des-
quels 'image doit étre assemblée. (3) Le Cache TOD est sollicité de nouveau. (4) Si
le fichier souhaité ne se trouve pas dans le cache, il doit étre copié a partir du serveur
DICOM. Le DICOM TKD interroge le serveur DICOM & travers le DICOM RQD.
Il récupére ainsi en paralléle un ensemble de coupes DICOM (5) Les coupes DICOM
sont rassemblées en une image 3D grace a un Image TOD. (6) Enfin, 'image est
stockée dans le cache (la fleche vers le Cache TOD est omise par souci de lisibilité)
et est renvoyée vers la grille. Cf. étape 2 de la figure 1.4a.

Capture des images et déploiement expérimental

Une machine cliente (engine) de type DM? a été installée a ’'Hopital Cardiolo-
gique de Lyon (voir figure 1.6). Celle-ci avait la responsabilité de gérer la communi-
cation avec les imageurs IRM, de procéder a la transmission DICOM des séquences

28

d’images, de lancer les processus d’extraction des métadonnées et le calcul de carac-
téristiques des images (nouvelles métadonnées) et d’enregistrer ces informations au
sein de la machine serveur (engine), également de type DM?, localisée a 'INSA de
Lyon, laquelle gére plusieurs hopitaux ainsi que la communication avec la grille de
calcul. De telles informations (métadonnées) peuvent étre utilisées dans un procces-
sus ultérieur, par exemple pour une mesure de similarité (voir figure 1.7). Des tests
ont, été menés avec cette infrastructure et ils valident sa faisabilité opérationnelle.

DICOM pull

CREATIS at Hospital CREATIS;SERVER

console MRI-----~

¢ CTN
:(-. T

I

DM2 CLIENT DM2 SERVER-| M2
DICOM push ENGINE metadata ENGINE GRID

metadata

console MRl -~

¢ DCMTK
J A . DICOM |pusn

F1G. 1.6 — Hospital and Server

score 1.0 0.65 0.55

F1G. 1.7 — Mesure de similarité ; de gauche a droite : image de référence puis images
similaires classées du score le plus élevé au score le plus bas. On peut noter que
I'image similaire de gauche est nettement plus proche de I'image de référence que
les deux autres.

29

1.6 Expérimentations et évaluation

Outre des tests fonctionnels(cf. section 1.5.2), nous avons mené une série de me-
sures de performances dont 1’objectif était d’étudier la capacité du systéme DM? &
gérer de grandes charges transactionelles en respectant des temps de réponse accep-
tables par les médecins.

Nous avons utilisé une grappe de huit ordinateurs PC équipés de processeurs a
1 Ghz et de 1 Goctets de mémoire vive. Sur la machine serveur, nous disposions de
plusieurs disques durs UDMAS5 ATA et IDE RAID. La vitesse du réseau était de
100Mb/s.

Cette grappe utilisait :

Linux RedHat 7.3

CTN version 2.11.0 (serveur DICOM)
DCMTK version 3.52 (librairies DICOM)
PVM version 3.4.4

De nombreuses expérimentations ont été menées pour évaluer les performances du
systéme. Nous ne décrirons dans cette synthése que les tests de mesure de la capacité
du systéme, renvoyant le lecteur au chapitre Expérimentations du manuscrit pour
les autres expérimentations.

Nous avons, dans les tests de capacité, installé un serveur DICOM sur chaque
neceud de la grappe afin de simuler huit hopitaux. DM? est configuré pour pouvoir gé-
rer jusqu’a dix sessions en paralléle avec chacun des hopitaux. Il peut ainsi transférer
en paralléle autant de coupes que de sessions définies. Cela signifie que notre serveur
peut transférer jusqu’a 80 coupes DICOM en paralléle (10 coupes par héopital).

La figure 1.8 illustre le montage expérimental.

Nous avons ainsi concu une premiére expérience pour évaluer la capacité maxi-
male du systéme. Nous avons donc émis une requéte de lecture d’un fichier DICOM
(routine getDM2Image) pour chacun des huit hopitaux. Etant donné que chaque
requéte concerne une séquence de 10 coupes, cela implique que nos requétes si-
multanées forcent le systéme & transferer 80 coupes DICOM en paralléle, ce qui
correspond exactement a la capacité maximum configurée du systéme d’accés aux
données.

La figure 1.9 montre le temps de réponse (hors temps de lecture disque) de
chacune des huit requétes. Il est important de souligner ici que la durée lue sur la
courbe pour la derniére requéte correspond a la durée totale de ’expérience. On
peut ainsi constater sur la courbe que la durée de ’expérience est de 4.6 secondes;
la premiére requéte a été entiérememt traitée en 2,9 secondes aprés le début de
I’expérience, la deuxiéme en 3 secondes, la troiséme en 3.3 secondes, etc.

Ces tests démontrent a la fois des temps de réponse et une extensibilité (scala-
bilité) tout a faits satisfaisants qui démontrent la performance et la faisabilité du
systéme DM?.

Dans une situation plus réaliste, les requétes arrivent selon une distribution aléa-
toire, le systéme a donc ’avantage de pouvoir traiter une requéte avant que la sui-
vante arrive. Nous avons ainsi conduit une expérience au cours de laquelle 10000
requétes successives sont séparées par un délai aléatoire dont la durée obéit & une

30

Queryl Query2 Query3 Query4 Query5 Query6 Query7 Query8
N /.

time2 \ /
timel \ /
time 0 \§\§%éz‘é—/

timen

(%)
5

. l

Do oD B o
TEYY YYPY
Ny ey

Seq 1 Seq 2 Seq 3 Seq 4 Seq5 Seq6

capacity = 8 seq* 10 files= 80 filesin parallel

o A A,

)
g G RS A ol ol Wl A
m m M m mm i
Hospl| |Hosp2| |Hosp3 Hosp 4 Hosp 5| | Hosp 6 | Hosp 7| |Hosp8

F1G. 1.8 — Saturation.

Le grand rectangle représente la machine serveur; les petits carrés figurent les hépitaux (serveurs
DICOM). Les fléches externes en haut de la figure représentent les requétes arrivant au méme
instant au driver de requétes de DM? (symbolisé par un cercle). Les fleches externes en bas de la
figure montrent les transferts DICOM d’une image multi-coupes au niveau de chaque hépital. Les
fléches internes représentent les messages en attente d’étre traités par chacun des drivers de
requétes (RQD), qui sont symbolisés par des cercles dans la partie inférieure du serveur. Les
lignes en haut représentent les instants ol chaque requéte arrive au serveur. Ainsi, dans le cas
présenté, toutes les requétes arrivent au méme temps t0

loi de probabilité Normale ou de Poison [99] [101]). Nous avons alors d’une part me-
suré le temps de reponse de chaque requéte ; d’autre part, étudier le comportement
du serveur DM?2, en particulier la taille de la file d’attente en fonction du temps.
Les résultats (cf. chapitre Expérimentations) montrent que les temps de réponse
restent trés stables sauf dans de rares situations de saturation * dans lesquelles le

4Quand le délai aléatoire entre 2 requétes est vraiment trop court par rapport au temps de

31

Response time for (1 query ONLY/ hospital) - hDSEM 0.1.22

4.8 T T T —— .
46 - 8 Hospitals in parallel

response time (sec)

queries

F1G. 1.9 — Saturation du systéme
8 hopitauzx en paralléle ; une séquence de 10 images par hopital.

temps de réponse peut alors étre multiplié par 2. Néanmoins, le systéme parvient
toujours a se restabiliser dans un temps trés court, démontrant ainsi sa robustesse.

En conclusion, I’ensemble des experiences montrent : (i) que le prototype DM?
est capable de gérer de grandes charges transactionnelles et (ii) que les temps de
réponse sont tout a fait compatibles avec les attentes des médecins.

1.7 Conclusion

Bien que l'application ciblée concerne les requétes hybrides sur de grands en-
sembles d’images médicales distribuées, I’architecture DSE peut étre utilisée pour
modéliser tout systéme distribué exigeant performance, modularité, sécurité et par-
tage de données.

Notre solution résulte d’un couplage entre :

— un intergiciel de grille utilisé comme fournisseur de ressources (puissance de
calcul, espace de stockage. . .) et de fonctionnalités (authentification, réplication
de données. . .);

— des entités distribuées (les DSE engines) chargées de l'interface entre la grille
et les systémes d’informations (médicales) décentralisés.

L’architecture DSE suggére une structuration des applications analytique (pro-
cessus, transactions, drivers, services, interfaces) et fonctionnelle (cache, métadon-
nées, sécurité, traitement d’images...) qui permet & la fois de renforcer leur modu-
larité et leur réutilisation.

Un prototype de systéme de recherche d’images par le contenu, DM?, a été dé-
veloppé sur la base de cette architecture. Des tests fonctionelles & 1'hopital Car-
diologique de Lyon et des mesures de performance ont montré la faisabilité at la
performance de ’approche proposée.

Les principales perspectives a ces travaux portent sur :

— le transfert de notre prototype en un systéme opérationnel utilisable en milieu

hospitalier. Composé d’une base intergicielle (DSEM) et d’une application

réponse de chaque requéte.

32

médicale (DM?), le prototype actuel constitue une base solide pour construire
le systéme final.

— 'adaptation de I’architecture DSE a un modéle de grille “datacentrique” via
notamment l'interfagage des drivers DSE avec des agents mobiles.

33

Chapitre 2
Introduction

“.. some scientists started dreaming. They dreamt of a way to sur-

mount the obstacles. They dreamt of having nearly infinite storage space
so they would never have to worry where to put the data. They dreamt
of having nearly infinite computing power available for their institution,
whenever they need it. They dreamt of being able to collaborate with dis-
tant colleagues easily and efficiently, safely sharing with them resources,
data, procedures and results. And, being always worried about their re-

search grants, they dreamt of doing all this very cheaply - maybe even for
free!”, The GridCafe [173], CERN, Switzerland.

34

35

Summary 2

Medical applications relate to medical image manipulation, including
image production, secured image storage, and image processing. In this
chapter, we show how and for which purposes medical imaging applica-
tions can be grid-enabled.

Metadata represents data about the data : in our case, the data are
medical images and the metadata store relative information on the pa-
tient and hospital records, or even data about the image algorithms in
use in our application platform. Metadata are either static or dynami-
cally constructed after computations on data. We discuss how the meta-
data are used, produced and stored, and why a secure [109] and efficient
access to medical data (and metadata) must be provided.

Currently, much work s being done around the world, in projects
such as e-DIAMOND in Ozford, the European Project Mammogrid, CA-
MAEC in Spain, IRMA in Germany, medGIFT in Switzerland, Assert
in the USA, etc. However none of these address all the problems which
we have identified.

Finally, Grid technologies are not only providing additional compu-
ting and storage power, but they are also an opportunity to address new
medical challenges.

36

37

2.1 The Challenge

One of the primary expectations of physicians regarding medical information
systems is the ability to access distributed patient medical records for diagnosis and
for comparison with reference annotated records. Researchers and physicians want to
query large and distributed medical images data sets by their content rather than only
by their associated metadata. The proposition of a solution to this necessity is the
central objective of this thesis; it addresses different problems : (i) medical images
data sets are vast and geographically distributed, so a transparent and uniform access
must be provided to the user, (ii) data sets are identified and classified by associating
metadata to them, so this information must be stored in distributed databases, (iii)
querying an image by its content means performing image processing on the fly,
so using computing resources is a must for ending the query. The huge quantity of
required computing power makes desirable to use emerging technologies such as the
Grids as a source of computing resources.

There are other associated problems, such as security requirements or image
processing algorithms developments, but we will not consider them in this thesis.

Related work exists concerning grid middleware development, static and cen-
tralized medical images databases handling, or specialized algorithms for querying
images by their content, but none of these integrate all these elements into a widely
distributed environment. In this work, we aim at providing a global solution able
to deal with such queries in a wide distributed environment, by using external (and
cheap) computing resources (Grid). In the future, a system offering these type of
queries will look like a Grid Service or Web Service.

In section 2.3 we describe a medical use case, and in section 6.3 we give a scena-
rio for demonstrating the possible use of the prototype for a given application. This
work addresses the middleware and system issues, the design and implementation
itself. Our proposal to reach that goal goes through : (i) the design of a software
architecture, (ii) the development of a middleware prototype for accessing the distri-
buted medical data sources (DICOM Servers) and computing resources (Grids), and
(iii) the development of software components for building a general service which ins-
tantiates image processing algorithms on an image, and shows that the application
of querying images by their content becomes feasible.

2.2 Medical Data and Metadata

Medical images play a key role in medicine for diagnosis, therapy planning and
treatment follow-up, and epidemiological studies. Most of the medical imaging mo-
dalities today produce digital images [23]| in two dimensions (2D), three dimen-
sions (3D) or more, like 3D temporal sequences (4D), which represent a tremendous
amount of distributed data. These data must be accessed, transfered and processed
in an efficient way. Handling and processing a large number of distributed image
databases address several problems one must deal with :

— Huge Amounts of Data |44].

(i) a standard 3D Computed Tomography scan (CTscan) or a Magnetic Reso-
nance Image (MRI) represents tens to hundreds of Megabytes of data, (ii) a

38

single radiology department in a medium size hospital is estimated to produce
tens of Terabytes (10° bytes) of digital images each year, (iii) the total data
produced in European countries and the USA is in the order of Petabytes (102
bytes).

— Distribution.

Medical images are distributed over the medical acquisition centers throughout
the territory. The necessity of automated, distributed and transparent access
to remote data and processing increases day after day.

— Access Regulation.

Although national laws concerning medical images are heterogeneous in Eu-
rope, the current trend [121] is : (i) a free access of patients to their personal
medical data, and (ii) the long term archiving (from 20 to 70 years) of all me-
dical data for pathologies and epidemiology studies. Medical data are sensitive
and should only be accessible by accredited users, which makes data manipula-
tion over a wide area network difficult. Users often want to associate additional
data (metadata) to the original data or images, such as clinical features, per-
sonal observations, biology or cythology results gathered by medical experts.
Although patient metadata are the most sensitive part of the data, no medical
data, including the image content, should ever be accessible to unauthorized
users.

— Computing Requirements.

Automated medical image analysis and processing tools have been developed
in computer science and signal processing laboratories for more than 15 years.
Beyond the low level processing for signal filtering or 2D /3D reconstruction,
medical image processing algorithms [111]| proved to be useful for image en-
hancing, visualization, comparison, quantitative evaluation, and various simu-
lation processes. These algorithms provide diagnosis assistance, therapy plan-
ning tools, and a way of performing both tedious image analysis tasks that are
not tractable by humans for very large datasets, and also advanced imaging
tools for high level modeling.

The medical images related to a patient, are not self consistent in the sense that
the physician needs to interpret them in a global context. The images content is only
relevant for medical decisions when additional parameters such as patient age and
sex, complementary records and/or sociological and environmental conditions are
considered. Beyond simple diagnosis, many other medical applications are concer-
ned with the data semantics and require rich metadata content. Epidemiology, for
instance, requires the study of large data sets and the search of similarities between
medical cases (are all affected patients belonging to the same category ? Same age
range 7 Same professional context ? etc). There is a need to take into account the me-
tadata about each medical case, like features resulting from images processing (e.g,
pathologies or anatomical shape descriptors) in the similarity criterion. Therefore,
medical metadata carrying additional information on the images are mandatory.

Although weakly structured, medical data have a strong semantic content and
metadata is necessary to describe it. Medical data are not “raw data”, like in many
grid applications (physics, astronomy, environment). They are semantically rich data
that are even enriched by the use of metadata. These structured metadata permit

39

a better handling of the data itself, providing indexation algorithms, information
retrieval, data classification, and data caching, in which the relevant meaning of the
data is considered for improving data management. The current interest in semantic
grids and metadata management at the Global Grid Forum [162] is an indicator of
this current trend.

Although there is no universal standard for storing medical images, the most
established industrial standard is DICOM (Digital Image and COmmunication in
Medicine) [142]. DICOM describes both an image format and a client /server protocol
to store and retrieve images on/from a medical image server. Most recent image
acquisition devices implement the DICOM protocol. The DICOM file format is made
of a header containing metadata followed by one or several image slice(s) in a single
file (sequence of images); While a 2D image is just one slice, and is stored as a single
file, a volume (3D) or temporal (4D) image might be represented as several slices.
This means that it is possible to store the sequence of images as a sequence of files,
where each one has its own associated metadata (see figure 2.1) .

Metadata

F1G. 2.1 — Sequence of DICOM Images.
Metadata for each slice in the sequence (N files).

DICOM images already contain several acquisition-related metadata in the image
header. Precisely, there are two kinds of information :
— sensitive patient-related metadata such as patient name, sex, age, radiologist
name, hospital, etc.
— image-related metadata such as image acquisition device type, constructor
name, acquisition conditions, acquisition date, number of images stored, size

40

of images, field of view, etc.

However, in practice, these in-file metadata are often incomplete (the patient
name may appear but not its age, etc) and not well adapted for data search and
query. Therefore, DICOM servers usually extract the in-file metadata and store them
in databases where they can be completed and exploited.

2.3 Medical Use Case

To illustrate our goals we will consider the following example : a cardiologist looks
for cardiac images similar to those acquired on one of his patients to confirm his
diagnosis. He wants to rank the images through a similarity score computed between
them and the patient image. He is specially interested in cases with an ejection
fraction (EF) ' greater than 0.5. Once the images are ranked, he needs to visualize
the most similar cases and their attached diagnoses. His own diagnosis can then be
stored in the patient record and added to the information system. In technical terms,
the cardiologist needs to :

1. Query a distributed metadata database holding information about images.
These metadata might be stored with each image they are attached to.

2. Access a large data set with comparable cardiac images distributed over dif-
ferent hospitals.

3. Take advantage of pre-computed metadata, stored in the database, and useful
for reducing the query domain (the EF).

4. Make computations (similarity measurements) on a large number of images in
a very limited time.

5. Update the metadata database and its associated medical image data collec-
tion.

The first two items are related to the problem of accessing medical data, the 3rd
item is about images indexing and pre-computing, the 4th one has a relationship with
content-based image queries and hybrid queries, and the last one is about tracking
(see below).

We briefly describe each item as follows :

— Accessing medical data.

A specificity of medical data is their strong semantic content. A medical image
itself has often low interest, in itself, if it is not related to a context (patient
medical record, similar cases [44] [110]). In a first step, users first query the
metadata database to identify relevant information, e.g, the cardiac images of
the concerned patient. Then the application will query a data location service
to get the physical location of all the requested images. That might be spread
over several hospitals. The application will retrieve the set of DICOM images
from the selected hospitals and assembles them in a single 3D image (one
file) or in temporal sequences, that will be returned to the cardiologist for
visualization. Clearly, the latency for accessing those data must be minimized.

IThe ejection fraction is the amount of blood that the left ventricle pomps out per beat into
the body when it contracts.

41

— Images indexing and pre-computing.
The previous query implies accessing medical databases and using complex
access patterns involving both metadata related to each patient record and
image content analysis. In order to improve the response time, it is desirable
to pre-process the images and to generate metadata indexes useful for image
retrieval, such as histograms, texture parameters, etc, considered as metadata
here.
Other metadata include patient related information (name, age, ...), diagnosis-
related, and therapy-related information.
A good pre-computing strategy can reduce the data search domain and de-
crease the query time.

— Content-based image and hybrid queries.

The medical application must analyze on-the-fly images when a query arrives,
in order to extract features from the image when they have not been pre-
computed (e.g, similarity scores). This kind of query, which performs compu-
tations for extracting features from the image before returning results to the
user or taking a decision, is understood as a content-based search.
In our example, the query needs to : (i) query classical metadata (cardiac
images, physician name, and location), (ii) query pre-computed metadata in a
database, (iii) access remote raw data (DICOM images), and (iv) compute on
the fly additional information from the images, before deciding if it is helpful
or not.
Such a complex query is called a hybrid query as it involves both metadata
and content processing. Hybrid queries can obviously take advantage of images
indexing for reducing the search domain. Content-based access to data by
visual features on the image content is complementary to text-based queries
on the metadata, and is unlikely to ever replace them completely. That is why
hybrid queries are needed.

— Tracking.
In order to improve the diagnosis a physician ask for additional computations
that produce new processed images. However, the physician always needs to
come back to the raw data when visually analyzing a processed image. Conver-
sely, for each input data it is of interest to optimize computations to record
the results of previous image processing algorithms. Thus, relationships must
be established between the raw data images, the computed images, and the
additional metadata. It should always be possible to know, for a given image,
where it originates from (which algorithm and which input image(s) were used
to produce it). This requires updating the (distributed) patient and image
database in order to track images and metadata, with new images and new
metadata. This tracking represents the history of a patient.

42

2.4 Distribution and Grids

Medical data are stored and archived inside each medical image producer site
(hospitals, clinics, radiology centers). The medical record (image files and meta-
data) of one patient is therefore distributed over the different medical centers that
have been involved in the patient health care. Several Picture Archiving and Com-
munication Systems (PACS) [25], Radiology Information Systems (RIS) and Hospi-
tal Information Systems (HIS) have been developed to provide data management,
visualization, and, to some extent, data processing 2.

Even if a standard for health-care specific data exchange such as HL7 [197]
exists 3, at the moment it is not widely used in solutions including integrated PACS,
RIS and HIS. Moreover, PACS and RIS are usually designed to handle information
between a single hospital. They do not consider either the transmission of such
sensitive data between sites, nor the integration with external computing or storing
facilities.

With the performances of computer networks and hardware technology, parallel
and distributed processing have become a key technology which play an important
role in determining future research and development activities in many academic,
research and industrial branches.

However, medical applications need more than distribution, they require obtai-
ning access to specialized resources, such as those a Grid can offer. As defined in
[158], a Grid “is a type of parallel and distributed system that enables the sharing,
selection, and aggregation of geographically distributed "autonomous” resources dy-
namically at runtime depending on theiwr availability, capability, performance, cost,
and users’ quality-of-service requirements”. These types of resources are highly de-
sirable for medical systems.

Grid technologies, as a data intensive manipulation framework, are promising for
medical image management [30] [32]. They offer large scale and distributed storage
capabilities associated with a better use of computing power. They permit the sha-
ring of data and resources which is important for clinical practice since hospitals
and clinics usually do not own much computing power. Beyond the obvious interest
of grids for clinical practice, this technology favors research by allowing scientists
to share datasets and image processing algorithms more easily than ever. All of
these facts have risen the awareness of the benefits of grid technology in the medical
community recently.

Grid Computing research works have long been focused on the efficient use of
computing resources in terms of scheduling, resources discovery and usage, in pro-
jects like Globus [14], Condor [127] or Legion [15] [128]. Interest in data being ma-
nipulated by grids only grew when the amount of data used or produced in grid
applications started to become a real problem. In this context, the two European
projects, DataGrid [126] and EGEE [143], both consider huge databases handling

2PACS archive images and allow image transfers. RIS contain full medical records : image-related
metadata and additional information on the patient history, pathology follow-up, etc.

SHL7 (Health Level 7) : An ANSI standard for health-care specific data exchange between
computer applications. Its name makes reference to the top layer (Level 7) of the Open Systems
Interconnection (OSI) layer protocol for the health environment.

43

and fast distributed computing, since petabytes of raw data provided by applica-
tions such as particle physics experiments, earth simulation and bio informatics, are
supposed to be delivered to the grid.

A big concern when distributing medical data over a grid is privacy. Medical
data are confidential and should only be accessible to the patient himself (herself),
the medical team involved in his (her) health care, and, under some restrictions, for
research purposes. Therefore, a medical grid, opened to a wide community of users,
must enforce strict access right control. The lack of data security integration is today
a major weakness of emerging grids middlewares to address medical requirements.

In this thesis, we address the topics of data access and manipulation in a medical
grid, but not the security issue. It is out of our scope of interest; however it is a
matter of research by our team [187].

2.5 Ongoing Work

In this work we address both computer systems and middleware topics (low
level), and dedicated medical images applications (high level). In this section we
describe the ongoing work in the medical application field [112]. We selected the
most significant projects in our field of interest.

Our thesis is part of the MediGrid [131] project, a French ACI project which
aims at exploring the use of Grid technologies for processing huge medical image
databases, co-operating and interfacing with the European DataGrid project [126]
and EGEE project [143] (see section 3.1.2). It is also underlined in the Ragtime
Project [195], another French project * which aims at supplying Grid middleware
tools in order to provide access to huge medical image data-sets.

The Medigrid Project addresses several topics, such as (i) an MRI images simu-
lator, (ii) a 3D anatomic and functional cardiac model, (iii) the design and develop-
ment of mechanisms for accessing medical images in a distributed and heterogeneous
environment, and (iv) the execution of hybrid content based and indexed queries of
medical images.

The Ragtime Project addresses : (i) middleware issues for getting access to data,
(ii) definition of distributed databases for managing target medical metadata, and
(iii) development of mechanisms to connect medical data with a Grid, and (iv)
development of tools for image visualization and data manipulation. Ragtime also
addresses the development of applications as the construction of a statistical atlas of
human organs, the automatic analysis of mammographies for cancer diagnosis [107]
[108], modeling of cardiac dynamics, and the proteins analysis.

This work contributes |45] [44] [51] to items éii and iv of Medigrid and items i,
1 and 11 of Ragtime.

2.5.1 Data Grids Projects

In this section we describe projects which are based on the existence of large
databases and use Data Grids infrastructures.

4Supported by the region Rhone-Alpes

44

Mammogrid

The Mammogrid Project ® aims at developing a European-wide database of mam-
mograms for investigating important health-care applications as well as cooperating
with health-care professionals throughout the EU [29]. The project looks for helping
in breast cancer diagnosis and treatment.

Mammogrid intends to use Grid infrastructure in order to enable distributed
computing at a European scale. Most important applications to be implemented
address two main problems : (i) Image variability, due to differences in the acquisition
processes , and (ii) Population variability, which causes regional differences and
affects criterions for treatment of breast cancer. The project intends to pave the
way for potential knowledge discovery in the diagnosis and understanding of breast
cancer [146].

Of primary importance is the security of the patient raw data, that must remain
anonymous and confidential, as well as the associated records. This implies the
use of efficient information structures for dealing with data integrity, quality and
consistency.

The MammoGrid database manages medical images (such as MRIs) associated
with the patient records, thus providing to the health-care professionals a platform
for further clinical studies.

Let us note some technical points :

— The Mammogrid database contains series of individual images (e.g., MRI) and
copes with the Standard Mammogram Format (SMF) [147]. It is also DICOM
compliant although the source image files are not in that format. They must
be converted into SMF or DICOM format before becoming available.

— Its database is built from multiple federated databases [32] including X-ray
mammograms, MRI, and metadata, meaning that raw data must be transfered
to a data store [29|.

— The database is also built using the SMF standard, which means converting
files into that standard.

e-DIAMOND

Oxford University’s eDIAMOND [144] grid computing project ® is part of the
United Kingdom’s e-Science [145] 7 program, a nationwide initiative to make access
to computing power, scientific data repositories and experimental facilities as easy
as the Web makes access to information.

In the UK there are about 40.000 women diagnosed with breast cancer every year,
and eDiamond is aimed at helping physicians to make more accurate diagnosis of
breast cancer. The project uses a large database of mammograms, to provide image

5Supported by the Commission of the European Union Information Societies Technology (IST)
Program

60xford University led eDTAMOND.

"e-Science is a UK programme which aims at developing and brokering generic technology
solutions and generic middleware to enable e-Science and forming the basis for new commercial
e-business software. The e-Science Center (0eSC) at Oxford University is involved in many colla-
borative e-Science projects, in different scientific fields such as : (i) physics and engineering, (ii)
health, (iii) biological and environment, and (iv) grid technology.

45

comparisons based on diagnostically meaningful information, overriding the varia-
bility observed during the image acquisition process. The system aims at defining
quality controls in screening programs and in the study of breast cancer epidemio-
logy.

The project pools and distributes information on breast cancer treatment, en-
ables early screening and diagnosis, and provides medical professionals with tools
and information to treat the disease. It gives patients, physicians and hospitals fast
access to a vast database of digital mammograms. It is also expected to help reducing
the rate of false-positive diagnosis.

Once the patient’s mammograms are loaded into the system, a software screens
them for abnormalities by comparing current mammeograms with anterior ones from
the same patient. Physicians can also visually compare similar cases extracted from
the database |31]. Meanwhile, data-mining and image processing techniques explore
the stored mammograms in order to help in both the detection of abnormal features
as well as the diagnosis of cancers.

Standardization of images from different centers in the UK would “enable a data-
base to be built using scans taken on different machines or at different sites, with the
effect being that they would all appear as if they were produced on the same machine
under the same conditions”|144]. The facility to standardize digital mammogram
images (SMF) [147] enables comparison of mammograms in terms of intrinsic tis-
sue properties independently of scanner settings, in the hope to help radiologists
to compare and evaluate mammography scans, no matter where or when they were
created.

2.5.2 Other Projects

The projects described in this section require for computing power and have the
potential to make use of Computing Grids infrastructures; however, they are not
computing grids projects.

DISMEDI

DISMEDI, the Distributed High Performance Processing of Medical Images Sys-
tem, is a project of the High Performance Networking and Computing Group of the
Polytechnic University of Valencia 2° (Spain) [151]. It is a project common to the
Polytechnic University of Valencia [151] and hospitals Malva-Rosa and de la Ribera
in Spain.

This project aims at designing [150] a high-performance, low-cost, medical server
offering image-processing software for 3D segmentation, 3D reconstruction, naviga-
tion, etc. The system works in a standard DICOM network as a DICOM client /server
and is oriented to the domain of Digital Radiology. It is a system for (remote) image
diagnosis, but the final product resembles more to an Advanced PACS than to an
image processing tool giving access to huge distributed databases.

46

CAMAEC

The CAMAEC project is also a project of the High Performance Networking
and Computing Group of the Polytechnic University of Valencia (Spain) [151]. Its
main goal is to build a complete parallel computing system [152] for the simulation
of action potential propagation in a two-dimensional cardiac tissue using a cost-
effective cluster of PCs. CAMAEC is a specific parallelized system [33], which uses
high performance computing techniques and tools (MPI).

medGIFT and CasImage

The Division of Medical Informatics at the University Hospitals of Geneva [155]
works intensively in PACS related research, distribution of medical images, advance
image processing, content-based image retrieval, etc.

medGIFT [198] aims at developing new tools for content-based image retrieval
(CBIR) and Content-Based Visual Information Retrieval (CBVIR). The CasImage
[199] program is a collection of medical cases dedicated to pulmonary diseases in-
cluding medical lung high-resolution CTs images (DICOM). It is a public reference
image database which is useful for establishing diagnosis.

PTM3D

In Paris-Sud University, researchers are developing the system PTM3D |200] for
visualizing, navigating through, and analyzing [30] multi-modal medical image data
sets as CT, NRI, US. However, it does not consider distributed databases for doing
hybrid queries.

AQUATICS

AQUATICS [154] is a project of the EUTIST-M Initiative [153] which aims
at providing a simple and effective collaborative diagnosis and treatment planning
to interventional radiologists performing endovascular repair of Abdominal Aortic
Aneurysms. It delegates sophisticated IT tasks, such as medical imaging processing,
to a specialized distributed service based on lightweight middleware. This project
will address grid computing, but does not consider hybrid queries processing.

20High Performance Networking and Computing Group of the Polytechnic University of Valencia
[151] is very active in High Performance and Networking applied to medical images and informa-
tion. They are also involved in the EUTIST-M Initiative [153] which researches and develops in
the Medical Sector by grouping a consortium of 40 European Companies, Universities and Tech-
nology Centers for improving medical information solutions. The application areas are Radiology,
Orthopedics, Oncology, Intensive Care Units, Surgery, Dermatology.

Recently, this group has developed a middleware for storing, retrieving and processing DICOM
medical images [98]. That middleware aims at providing transparent access to medical imaging
resources. The application built on top is related with volume rendering of tomographic studies
and not considers queries by-content

47

IRMA

Another CBIR project is IRMA[156] at the Aachen University of Technology
(RWTH Aachen) in Germany. It aims at developing and implementing high-level
methods for content-based image retrieval with prototypical application to medico-
diagnostic tasks on a radiological image archive. The objective is to perform seman-
tic and formalized queries on a medical image database, which includes intra- and
inter-individual variance and diseases. Its main focus is in the content-based search
algorithms and not in the computer mechanisms for applying one algorithm in a
general sense.

Assert

the Assert project [157] of the Department of Radiology at Indiana University
and the School of Medicine at the University of Wisconsin (USA) uses a database
that consists of a High Resolution Computed Tomography of the lung. To pose a
query to the database, the physician circles one or more pathology bearing regions
(PBR) in the query image. The system then retrieves the n most visually similar
images from the database using an index comprised of a combination of localized
features of the PBRs and of the global image.

2.5.3 Comments

The Mammogrid Project aims at developing a European-wide database of
mammograms by using multiple federated databases. This approach means that the
raw data must be transfered to a data store. Our understanding of the problem
motivates us to access the raw data at its origin (hospitals) without exchanging
files. We consider only a federated metadata database by geographical region, not a
raw image data collection. Additionally, Mammogrid requires for file conversion into
the SMF standard. We aim at using the image data as it is in the origin (DICOM or
another format). While Mammogrid works with images, we must deal with temporal
sequences of images (4D).

eDIAMOND Project aims at defining quality controls in screening programs
and in the study of breast cancer epidemiology. Its direction has some important
differences from ours :

— This project looks for federating data and building a huge standardized da-
tabase of images, while we want to ease access into the existing data without
moving the master images, which means taking advantage of distributed data
at the origin.

— E-Diamond provides grid computing resources within its own environment
whereas we aim at developing systems which use existing grid resources.

— Contrary to Mammogrid or eDIAMOND projects which handle series of indi-
vidual static 2D images, we must manage 3D volumes and temporal sequences
of images, which means huge amounts of complex structured objects to deal
with.

— We address the generic problem of medical image data management whatever
the application field.

48

Projects as the ones described in section 2.5.2, address some of the problems
which we must deal with. However, they are different than ours, in the sense that
they are not oriented Grid projects, even if in the future they can fall in this research
direction. For example, DISMEDI has some elements of image processing (remote
image diagnosis), but it is closer to a PACS system than to a huge distributed
system capable of executing image processing. CAMAZEC implements image pro-
cessing over 2D cardiac tissue images rather than temporal sequences (4D), as we do.
DISMEDI and CAMAEC are cluster oriented projects rather than Grid Computing
projects, as is ours.

Some projects address the problem of querying by the content (medGIFT,
IRMA, Assert), but not of the size that we have to deal with, and without using
external computing resources (Grid) as we do.

Similar to the IRMA project, the Assert project is based on content-based
image retrieval methods, whereas we are interested in the computing methods for
easing and accelerating a query which uses the same algorithms. We are not looking
for content-based query algorithms, we aim at allowing a scientist to apply different
existing algorithms (or his/her algorithms), in a massive way, over a huge database.
Our project will allow systems such as IRMA or ASSERT to run their algorithms
taking advantage of Grid Computing Resources and large distributed databases of
medical images.

AQUATICS addresses middleware issues but does not study hybrid queries
processing. However, some image processing, simulation, and modeling algorithms
are very CPU intensive and need a parallel implementation in order to get executed
in a reasonable amount of time compatible with clinical practice constraints. In order
to deal with medical images, we have to split raw image data from metadata [45]
for allowing the selection of images for a posterior process.

2.6 Positioning

Computational grids [5, 12| have encountered a large success among the dis-
tributed computing community. Many technical developments aim at providing a
middleware layer for submitting remote jobs [41, 4, 13|, storing data [6], or monito-
ring a distributed system [40]. But most importantly, from the user point of view,
grids should provide transparent access to distributed resources and ease data and
algorithms sharing.

Grids make the promise of large computing power and data storage space, but
more benefits are expected in the medical imaging domain beyond these capabili-
ties. Indeed, grids are a vector for permitting the creation of large scale distributed
datasets, enforcing the use of common standards, and permitting the medical com-
munities to share computing resources and algorithms. Grids are likely to have a
deep impact on health related applications by playing a key federative role [24].
They will provide a logical extension to regional health networks [25] by allowing
distant sites to collaborate and exchange their data for specific research purposes.

Sharing data sources will facilitate research on pathologies and epidemiology.
Connecting distributed data sources will allow researchers to assemble virtual data

49

sets suited to statistics extraction or to study rare diseases. With a proper grid
infrastructure, experiments can be led at a scale never reached before. Sharing re-
sources will facilitate the access of health centers to image processing services even
though they might involve computation. Sharing algorithms will ease the access to
such image processing tools for the end user.

In this context, we are interested in the integration process of tools and services.
We propose to explore distributed architectures and middleware techniques in order
to :

— provide the Grid an access to medical images and data which are external to

the Grid environment. This enables a Grid to work with data which are not
in its domain 8.

— ease the process of hybrid queries over huge distributed medical images data-

bases.

— take advantage of grid computing for accelerating massive hybrid queries.

To remain transparent from the user point of view, a middleware layer should
take into account the particular needs of medical applications. We look at dealing
with different kinds of medical images; however we are working towards having
an initial prototype which allows the management of temporal cardiac sequences
of images (sequences of volumes 3D). This fulfills the research interests between
CREATIS laboratory [148] and LIRIS laboratory [149].

In this work we propose an architecture which is called (Distributed Systems
Engines - DSE), and defines a multi-layer structure which is implemented as a
prototype in two big chunks, the middleware or manager, called DSEM, and the
application, called Distributed Medical Data Manager (DM?). These concepts
are developed in chapters 4 and 5.

2.7 Document Overview

This document begins with a survey of related work in the fields of distributed
systems, grids technologies, massive storage, middleware and image storage. The
third chapter provides an overview of the proposed architecture (DSE) and explores
its advantages in terms of extensibility, scalability and integration. Then, chapter 5
shows an implementation of our architecture at two general levels : middleware
(DSEM) and application (DM2). The application is developed for managing medical
and image data.

The first part of the chapter 6 details experiments which analyze the behavior of
our prototype when responding to stress conditions, and the second part addresses
the use of the system by showing an user application. The next chapter (7) discusses
our work in comparison with the open problems and the state of the art. It concludes
this manuscript and traces further work.

Finally, special terminology and acronyms are detailed, as well as two annexes
(8, 9) which describe useful information about a real test environment, and the

8 At the moment a Grid works with data which it totally controls, e.g, which are registered and
stored in the Grid. Moreover, medical images are de facto stored in external systems and can only
be partially (once anonimyzed and encrypted) transfered to the Grid.

o0

query-by-content algorithms which were used in the prototype application.

o1

Chapitre 3
Related Work

“In a Metacomputer, the resources are usually connected within the
LAN belonging to one organization, and its coupling is restricted to sha-
ring storage, files and separate applications, ... in the Grid the coupling
goes both much deeper and wider, the resources are often distributed on
the WAN and they belong to and are administered by different organiza-
tions”, DataGrid Project Report, EU [19]

“Cluster Computing is about resources aggregation in a single admi-
nistrative domain, ... Grid computing is about resource sharing and ag-
gregation across multiple domains.”, Rajkumar Buyya, University of
Melbourne, Australia

“Grid systems integrate resources that are more powerful, more diverse,
and better connected that the typical peer-to-peer resource, ... these are
both concerned with the pooling and coordinated use of resources within
distributed communities, but are based in different communities and focus

on different requirements.”, Ian Foster, Argonne National Laboratory,
USA

92

93

Summary 3

We aim at offering image querying by the content and hybrid queries
over a huge set of partially distributed medical images. Additionally, the
system has constraints of high-performance, high-throughput and data-
intensive computing. Thus, our project has some relationship with dif-
ferent fields of Computer Science.

Due to the widely distributed environment of the project, we make
a descriptive revision of on going work in Distributed Computing. The
high-performance, high-throughput and data-intensive constraints have
motiwated us to take a look at Mass Storage Systems and Grid Compu-
ting fields.

Grid Computing is addressing the problems of resource sharing, co-
ordinated problem solving, and dynamic, multi-institutional virtual orga-
nizations, while other Distributed Technologies deal with aggregation of
resources in a single administrative domain. The key is the coordinated
use of resources.

Grids are classified as : computational, scavenging and data grids. A
forth kind of Grid has been presented : the data-centric Grid. Charac-
teristics of on-line data increasingly suggest that they should be used in
place, rather than copied around. Datacentric grids have been proposed
wn order to deal with problems which the code goes to the data, instead
of data going to the code.

We discuss in this chapter the most important projects in Grid Midd-
leware : Globus, Condor, Legion, Unicore, Gridbus, SRB, and also many
Grids Related Projects such as DataGrid, EGEE, EuroGrid, K-GRID,
NASA IPG and CrossGrid.

We them compare grid and Peer-to-Peer systems in terms of rele-
vance to our concerns.

Object computing infrastructures such as CORBA, DCOM and Java-
RMI are also presented. Indeed thus define interoperability between dis-
tributed objects in a heterogeneous, distributed environment and in a
way transparent to the programmer, which interferes with some of our
CONCerns.

We present also other technologies of distributed systems, such as
Distributed File Systems and Mass Storage Systems. A Hie-
rarchical Storage Manager (HSM) is a kind of MSS. Some Mass Sto-

o4

rage Systems (HSM/MSS) are described (Castor, Enstore, Eurostore,
HPSS) ; their commonality being that all address the need for storing
vast quantities of data (hundreds of TB to PB scale).

Medical Information and Medical Images are stored in PACS sys-
tems. A PACS should allow the functional ability not only to distribute
images to the requestor but also to communicate to physicians for patient
scheduling, download patient demographics to modalities, to track image
location, and to assemble collaborative material necessary to interpret
the 1mage.

The Digital Image and COmmunication in Medicine DICOM facili-
tates interoperability of medical tmaging equipment by specifying proto-
cols for medical devices, syntax and semantics of commands and associa-
ted data for transmission information. It also facilitates operations in a
networked environment without the requirement for Networked Interface
Unats.

Most PACS systems are built on top of the DICOM standard [49].
Though our research is not directly concerned with PACS we highly
present the DICOM standard and PACS systems as our system ma-
nagers DICOM compliant.

95

As was described in chapter 2 section 2.1, we aim at offering medical image
querying by the content and hybrid queries, in a partially distributed environment
with constraints of high-throughput computing. We need to deal with huge quantities
of image data sets which require vast resources of computing and storage. Thus, our
project has some relationship with various fields of Computer Science : distributed
computing, grid computing, (image) data storage.

In section 3.1 we discuss grid technologies and, more precisely, work in grid
middleware. Then, in section 3.2 we take a look at other distributed computing
frameworks. Finally, section 3.3 is dedicated to image storage.

3.1 Grid Technologies

The challenge of grid computing is the integration of heterogeneous computing
and data resources aiming at providing a global computing space. The achievement of
such a goal will involve revolutionary changes in the computer sciences, by enabling
large scale resource-sharing across networks.

Grids enable the sharing, selection, and aggregation of a wide variety of resources
including supercomputers, storage systems, data sources, and specialized devices [16]
that are geographically distributed and owned by different organizations. This tech-
nology have led to the possibility of using wide-area distributed computers for solving
large-scale and data-intensive problems [8] [9] . It provides consistent, pervasive, de-
pendable and transparent access to the managed resources [52].

Grid applications, which are often multi-disciplinary and large-scale processing
applications, often couple resources that cannot be replicated at a single site, or must
be globally distributed for practical reasons. In this way, the Grid allows users to
solve larger-scale problems by pooling together resources that could not be coupled
easily before. A Grid is not only a computing infrastructure [11], for large applica-
tions, it is also a technology that can bind and unify remote and diverse distributed
[54] resources.

In order to allow a secure and robust infrastructure to be built, software stan-
dards (OGSA [137] and WS-RF [163]) are being defined and tools such as those
provided by the Globus Toolkit [129] offer the necessary framework. We do not aim
at improving these standards; but aim that our project must be easily adaptable on
top of standard interfaces.

Often, grids are categorized by the type of solutions that they best address. The
three primary types [158] of grids are (i) Computational grid, (ii) Scavenging grid,
and (iii) Data grid. Of course, there are no hard boundaries between these types and
often grids combine two or more of these |56] types. However, as someone considers
developing applications that may run in a grid environment, he (she) must appoint
the type of grid environment that will be used in order to make the appropriate
decisions.

— Computational Grids are focused on setting aside resources specifically for

computing power. They usually use high-performance servers.

— Scavenging Grids offer large numbers of desktop machines which can be

scavenged for available CPU cycles and other resources. Owners usually give

o6

up control over their available resources in order to participate in the grid.

— Data Grids house and provide access to data across multiple organizations.
They are responsible for tackling and managing large amounts of data in geo-
graphically distributed environments, allow one to share data, and also manage
security issues, such as who has access to what data.

We are not interested in Scavenging Grids; we interact principally with Com-
puting and Data Grids. In our project we neither propose, nor develop any Grid
middleware. Rather, we propose a system which can be interfaced for a Computing
Grid or a Data Grid in order to have access to remote and secured medical data. At
the moment, existing Grids work with data stored in the Grid, which means some
defined storage space is managed in the internals of the Grid, for example Storage
Elements (SE) [126]. However, most of the time, the medical data cannot be per-
manently stored into the Grid. In this way, we place our work as cooperative link
between a Grid and specialized medical systems that gives a Grid the ability to work
with external medical data.

Another common distributed computing model, that is often associated with or
confused with Grid computing, is Peer-to-Peer computing (P2P) . In fact, some
consider P2P as another form of Grid computing [53] [55], although there are im-
portant differences [18] (see the section 3.2.2). We do not implement P2P techniques
in our project, but it is a way of implementing and interconnecting the engines
proposed in the next chapter.

On a Grid, the underlying infrastructure for distributed storage and computation
is hidden so that the users do not have to know where and how the data are stored or
the applications run; in fact, it works as a shared networked computer resource |§]
[9] . A Grid manages data and computation intensive problems for which distributed
computing and resource sharing offer a solution. Thus, middleware tools have to be
build in order to implement this computational and storage infrastructure.

In practice, a Grid’s middleware should allow applications to simultaneously
use large numbers of resources, complex communication structures, resources from
multiple administrative domains to cope with, stringent performance requirements,
and to make dynamic resource requests [10] [16].

3.1.1 Grid Middleware
Globus

The Globus project [129] is an American led multi-institutional ! research effort
that intends to enable the construction of computational Grids and focuses on en-
abling the application of Grid concepts to scientific and engineering computing. It
develops fundamental technologies and prototype software tools (the Globus Toolkit)

LGlobus started in 1996, the main collaborators are Argonne National Laboratory’s Mathematics
and Computer Science Division (Ian Foster) and the University of Southern California’s Information
Sciences Institute (Carl Kesselman). Other institutions as NASA, Universities of Chicago and
Wisconsin, DARPA and the National Science Foundation (NSF, National Technology Grid) also
contribute in its development.

o7

which can be used to build computational grids on a variety of platforms 2.

Globus also does basic research in resource management, data management and
access, application development environments, resource location, communications,
and security. It supports the construction of Grid infrastructures spanning super-
computer centers, data centers, and scientific organizations.

A central element of the Globus system is the Globus Toolkit [14], which defines
the basic services and capabilities required for constructing computational Grids.
It provides a software infrastructure that enables applications to view distributed
heterogeneous computing resources as a single virtual machine. The toolkit also
provides a bag of services from which developers of specific tools or applications,
can select to meet their own particular needs. Globus is constructed as a layered
architecture in which higher-level services can be developed using the lower level
core services [4] and emphasis on the hierarchical integration of Grid components
and their services. This feature encourages the usage of one or more lower level
services in developing higher-level services.

Higher-level tools such as resource brokers can perform resource discovery by
querying its LDAP [60] service. Globus offers QoS in the form of resource reservation
and provides scheduling components as part of its toolkit approach. It does not
however supply scheduling policies, but relies instead on higher-level schedulers.

The major research challenges and ambitious goals that are addressed in the
Globus project are designing, developing and supporting :

— resource management infrastructure.

— fault tolerance support.

— advance reservations and policies for accounting in large-scale grid environ-

ments.

— distributed infrastructures and tools for data-intensive applications, managing
and providing high performance access to large amounts of data (terabytes or
even petabytes).

— new problem solving techniques, programming models, and algorithms for Grid
computing.

— high performance communication methods and protocols.

We aim at providing a system for offering access to medical images, which can be
interfaced from other external systems. One of these systems can be a Grid (using
Globus or other core Middleware), which use it as a service offering access to large
amounts of medical data (data-intensiveness) with constraints of high performance.
Standards have emerged to structure grid middlewares into a set of services , to
integrate new services into an existing middleware and to interface services with
external components. Thus, interfaces between a grid using Globus and a service
like the one we intend to design should be OGSA [137] or WSRF [163| compliant.

2Several tools projects as Condor/G, the European DataGrid project, the EGEE project, have
used Globus components. Currently the Globus researchers are working together with the High-
Energy Physics and the Climate Modeling community to build a data Grid [6]

o8

OGSA/WSRF

The Grid computing trends are dependent on a common set of standards pro-
viding a collaborative context in order for partners to work together. GGF’s [162]
OGSA Working Group works in this definition.

The Open Grid Services Architecture (OGSA) is an evolution toward a Grid
architecture based on services concepts [58] and technologies. It supports [11] the
creation, maintenance and application of sets of services maintained by Virtual Or-
ganizations (VO).

There are two major pieces in OGSA :

— Core Grid Components :

They target functionalities like resource allocation and policy management.
Built on top of the infrastructure piece, these components can be combined to
build Grid applications and services.

— a common Grid infrastructure :

the Open Grid Services Infrastructure or OGSI specifies a Grid Service. Such a
service removes the need for core Grid components to directly reference specific
protocols like FTP, HT'TP or LDAP.

Nowadays, OGSA compliance [137] can be defined as clients or services that are
compliant with the OGSI Grid Service Specification. An OGSA-compliant service
can be defined as any OGSI-compliant service whose interface has been defined (by
the GGF OGSA Working Group) to be a standard OGSA service interface.

The OGSI specification defines conventions and extensions based on WDSL and
XML schema in order to enable state-ful Web Services. It also [59] : (i) defines me-
chanisms for creating, naming, and managing the lifetime of instances of services,
(ii) manages asynchronous notification of service state changes, (iii) declares and ins-
pects service state data, (iv) handles of service invocation faults, and (v) represents
and manages collections of service instances.

The Web Service Resource Framework (WSRF) [163| was proposed (January
2004) as an evolution of OGSIL. The WSRF exploits new Web services standards like
WS-Addressing. It retains the functional capabilities present in OGSI and changes :
(i) some of the syntax, (ii) its terminology, and (iii) its presentation. It also parti-
tions OGSI functionality into five distinct specifications. WSRF can be viewed as
a straightforward refactoring of the concepts and interfaces developed in the OGSI
V1.0 specification, in a manner that exploits developments in Web services architec-
ture.

At this point, WSRF is proposed as a mean of expressing the relationship between

state-ful resources and Web services, and is becoming a substitute for OGSI in
OGSA.

Other Middlewares

As Globus, the core middlewares below, must work with data stored in their
name-space.
— The Condor Project [127] is a High Throughput Computing [61] environ-
ment that can manage very large collections of distributed workstations and
clusters that are owned by different individuals. It is known for harnessing idle

99

computers CPU cycles [19] (cycle stealing ®), but it can be configured also to
share resources.

The Condor’s architecture is layered and offers resource management services
for sequential and parallel applications. It aims at harnessing the capacity of
collections of workstations and clusters for applications having a need for huge
computer power and heterogeneous distributed resources. It (i) offers resources
otherwise wasted by putting idle machines to work, (ii) expands the resources
available because it offers machines which are otherwise inaccessible.

Even though Condor itself was not originally aimed for Grid use, it can be
considered such as in a computational Grid tool [16]. It has no QoS support
and the information store is a network directory that does not use X.500/LDAP
|60] technology.

— The Grid Operating System Legion [128] [62] [63] is an object-based meta-

system or Grid operating system whose goal is to promote the principle design
of distributed system software by providing standard object representations
for processors, data systems, and hardware and software resources in general.
These standard objects represent the base in order to design distributed appli-
cations. Its software infrastructure integrates a system of heterogeneous, geo-
graphically distributed, high performance machines, and allows it to seamlessly
interact. Legion provides application users with a single, coherent, worldwide
virtual computer.
Legion works as a middleware layer between the operating system and other
Legion resources. It schedules and distributes the programs on available and
appropriate hosts; there is not a centralized control of resources, so each re-
source is independent. This approach of managing resources can be used to
parallelize programs. Since all elements in the system are objects, they can
communicate to another regardless of location, heterogeneity, or implementa-
tion details thereby addressing problems of encapsulation and interoperability.
A similar object-oriented middleware research project is Globe [164] at Vrije
University, Netherlands.

— UNICORE [165] [65] is a Grid computing environment that facilitates se-
cure access to resources in a distributed environment, and eases relocation of
computer jobs, for both end users and Grid sites.

The UNICORE middleware follows a three-tier architecture [64] : (i) user tier,
(ii) server tier, and (iii) target System tier.

The two main areas of UNICORE are : 1) seamless specification of some work
to be done at a remote site and 2) transmission of the specification, results
and related data.

— The Gridbus Project [158] |66] is an open-source, multi-institutional project
which aims at designing and developing service-oriented cluster and grid midd-
leware technologies. It uses economic models [16] for efficient management * of
shared resources and promotes commoditization of their services.

Gridbus emphasizes the end-to-end QoS for the management of distributed

3Condor takes wasted time and puts it to computational use.
4The computational concept of economy allows defining services providers and offering paid
services. They are based on the requirements and budget of particular application and users.

60

computational, data, and application services.

— The SRB (Storage Resource Broker) [166] is a client-server based midd-
leware which provides uniform access to different types of storage devices, re-
sources, and replicated data sets in a heterogeneous computing environment.
It supports storage systems such as HPSS, and database objects managed by
DB2, and Oracle. It also works together with the Metadata Catalog (MCAT)
[167] in order to provide a mechanism for storing and querying system-level and
domain-dependent metadata 5 through a uniform interface. Together the SRB
and MCAT servers provide a way to access data sets and resources through
querying their attributes instead of knowing their physical names or locations.
In the SRB environment [68] [67], the physical location of a data set is logi-
cally mapped to a logical name of the data sets, hence these may reside in
different storage systems. Its arrangement in directory-like structures is called
a collection, and provides a logical grouping mechanism for containing groups
of physically distributed data sets (sub-collections).

Grid Middlewares are important in the sense that a Medical Application can be

concerned to interface Grids developed on top of them.

Such an application must be able to interface different Grids, based on different
middlewares, such as Globus, Condor, Unicore, Gridbus, SRB. In this work we do
focus on the implementation of such interfaces, but deal with a conceptual model
which will enable such an adaptability.

3.1.2 Grids Related Projects

In section 2.5.1 we introduced ongoing work in the medical application field,
thus, we described grid related projects such as Mammogrid, eeDIAMOND and
others. In this section we describe multi-application grid projects which also address
middleware topics. The target applications of these projects are more general than
the specific medical field.

DataGrid/EGEE

The Data Grid project [126] was born as an initiative of the High-Energy Physics
(HEP) community, CERN and the European Organization for Nuclear Research, in
order to provide intensive computation and analysis of shared large-scale databases
(several Petabytes) across widely distributed scientific communities like HEP, Farth
Observation, Biological and Medical [21] informatics, all communities that are facing
equally daunting challenges to cope with huge floods of data. The project has finished
(February 2004) but it has evolved into another bigger project, EGEE [143], which
aims to implement a production environment at the European level.

The project objectives [19] were : (i) to establish a research network for data
Grid technology development, (ii) to demonstrate data Grid effectiveness through
the large-scale real world deployment of end-to-end application experiments, and

5Metadata associated with data sets, users and resources, information for access control, and
data structures

61

(iii) to demonstrate the ability to use low-cost commodity components to build,
connect, and manage large general-purpose, data intensive computer clusters.

The project focused on developing middleware services able to be used in the
analysis of physics data. It based on Globus (with extensions for data Grids) and
looked at being distributed in a hierarchical fashion into multiple sites worldwide.
It has dealt with global name-spaces in order to handle the creation, access, distri-
bution, and replication of data items. Special workload distribution facilities were
implemented for balancing the analysis of jobs in the Grid, and maximizing the
throughput from several hundred physicists. Application and user access monitoring
were also used to optimize data distribution.

The Data Grid project was implemented over a hierarchical machine organization
with less data stored at lower levels of the hierarchy. CERN was the T%er 0, storing
almost all relevant data with several Tier I regional centers in Italy, France, the UK,
the USA, and Japan, all of them supporting smaller amounts of data. An extensible
schema based on a resource model with a hierarchical name-space [20]| organization
was implemented. The Data Grid did not offer any (oS and the resource information
store was based on an LDAP [160] network directory. Resource dissemination was
batched and periodically pushed to other parts of the Grid, and resource discovery
in the Data Grid was decentralized and query based.

The LHC (Large Hadron Collider) [168] Computing grid project (LCG) [169] has
collaborated directly with DataGrid’s people, and has adapted a version of the SRB
Resource Broker [166] to be used as a Grid middleware component. This middleware
has been also highly influenced by the Grid system developed by ALICE 5, called
AliEn. The core infrastructure of LCG (LCG-1) has been improved to LCG-2 and
taken as the base core middleware for the new EGEE project [143], which aims at
developing a service grid infrastructure (in Europe) available to scientists 24 hours-
a-day 7.

The work described in this thesis must be interfaced with middleware like LCG2
in order to offer services of medical data access and execution of hybrid queries over
medical images. However, this is an integration at the application level of the Grid,
and not at the middleware layer.

Other Grid Projects

There exist so many Grid Projects [159] around the world, that we cannot men-
tion all of them; thus we selected the most significant. The projects below aim at
developing core middlewares or in using existing ones in order to develop computing
[106] [26] or data grids.

— The EuroGrid [172| project was granted by the European Commission and
was a successful initiative for experimenting with the use of GRIDs in selected
scientific and industrial communities. The project consisted of application-
specific groups for (i) transparently enabling chemists and biologists to submit

SLHC at CERN has four (4) experiments in High-Energy Physics (HEP) : LHCb, CMS, ATLAS
and ALICE.

"The EGEE project is among the largest of its kind, with a budget of over 30 Million Euros for
2 years. In the year 2006 it could be extended for another 2 years with an extra-budget, and after
2008 it could become the ARDA Grid [170]

62

their work to HPC facilities (BioGrid), (ii) advancing toward a weather pre-
diction portal (Meteo GRID), (iii) experimenting with CAE (Computer-aided
Engineering) applications, which are huge computing power consuming appli-
cations (CAE GRID track), and (iv) researching in HPC computing (HPC
Research GRID).

The EuroGrid was based on the UNICORE [165] middleware.

— K*Grid project [171] is an initiative in Grid researches supported by the MIC
(Ministry of Information and Communication, Republic of Korea), which aims
at providing a research environment to both industries and academia, with
access to a huge amount of computing power and virtual experiment facilities.
A key goal is to develop a Grid middleware which integrates many geographi-
cally and organizationally dispersed computing resources, massive data, and
human power. It uses Globus for developing the components in the application
middleware.

— The NASA’s Information Power Grid (IPG) Project is a high-performance

computing and data grid which allows scientists and engineers throughout
NASA [175] to access widely distributed heterogeneous resources from any
location with the IPG middleware.
NASA looks for revolutionizing its computing processes by implementing fun-
damental changes and improvements in access to powerful computing systems,
large-scale data archives, scientific instruments, and collaboration tools. Its vi-
sion aims at offering services which are highly capable of providing transparent
access to these resources, regardless of their location or exact nature .

— The CrossGrid [130] main objective is to extend the GRID environment across
Europe, and to a new category of applications. It implements and exploits new
Grid components for interactive computation and data intensive applications,
and addresses realistic problems in medicine ?, environmental protection, flood
prediction, and physics analysis [130] [71].

The applications focused on the project are characterized by the interaction
with a person in a processing loop, which means that responses to an action by
an user are required from the computer system. These responses can happen
from real, through intermediate, to long time, and they are simultaneously
computed.

The CrossGrid project develops applications such as : (i) pre-treatment plan-
ning in vascular interventional and surgical procedures through real-time inter-
active simulation of vascular structure and flow, (ii) support System for flood
prevention and protection, (iii) High-Energy Physics (HEP) applications for
physics analysis running in distributed mode, and (iv) weather forecast and
air pollution modeling.

The distributed and interactive nature of these applications motivates the use
of a Grid-specific software architecture. It enables technologies and services by

8The IPG project participates in the Grid Forum [162] and has developed its middleware using
Globus [129] and Condor [127] job management system for workstation cycle scavenging. It uses
also SDSC’s Metadata Catalogue (MCAT) [167] and the Storage Resource Broker (SRB) [166]

9¢.g., simulation and visualization of surgical procedures; in this way, medical doctors would
use new tools to help them to obtain correct diagnoses and to guide them during operations.

63

developing middleware and toolkits, which include resource scheduling, per-
formance prediction, monitoring, parallelization, user access via portals, user-
friendliness, ubiquitous computing and access to information .

— The Datacentric Grid (DCGrid) [174] is an innovative concept [69] [70] of Grid,
proposed by David Skillicorn at Queen’s University in Canada, which aims
at designing and implementing grids for data-intensive operations in which
data are moved as little as possible. Datacentric grid applications are likely
to require both access to data, and large amounts of computation, and aim
at reversing the traditional view that processors are the critical resource in
systems and hence that data should move to processors. This model aims
at moving the software to the data instead of moving data to the software,
as the classic model does. Hence, moving code requires orders of magnitude
less bandwidth than moving the data; this means deeply changing processor-
centric computing technology into a datacentric one.

This change of approach requires a wide-ranging change in the way of ap-
proaching distributed computation, so it concerns problems in fundamental
informatics such as : (i) mobile code, (ii) distributed data processing, (iii)
fragmentation code, (iv) security, privacy, and confidentiality, and (v) mobile
users.

We did not work with this approach, thought it has some interesting properties
to medical image applications. Indeed, because of the restriction of access to
data, it would be better to go to the data rather than copying the data. In
this way, confidentiality could be kept, and access restriction could be assured.
However, this approach brings constraints of computing power, because the
site having the data must also have the computing resource. This isa big issue
for a medical site : medical institutions are looking for processing power and
not for offering it.

3.2 Distributed Computing Technologies

3.2.1 Peer to Peer Computing

Peer-to-Peer is defined as a class of applications that take advantage of resources
(storage, cycles, content, human presence) and also claims to address the problem
of organizing large scale computational societies, as grid computing does. It accesses
decentralized resources and operates in an environment of unstable connectivity and
unpredictable IP addresses. It also has independence from DNS and is autonomous
from central servers.

Intel P2P working group defines P2P as "The sharing of computer resources and
services by direct exchange between systems" [72]. P2P systems have such charac-
teristics |73] as : (i) scalability, and (ii) reliability.

P2P can be categorized into two groups classified by the type of model : pure
P2P, and hybrid P2P. The pure P2P model does not have a central server. Hybrid
P2P models employ a central server to obtain meta-information such as the identity

10The CrossGrid software is based on the Globus Toolkit [129] and the EU DataGrid components.

64

of the peer on which the information is stored or to verify security credentials. In
a hybrid model, peers always contact a central server before they directly contact
other peers.

By topology, P2P systems are classified [74] as : (i) centralized, (ii) decentralized,
(iii) hierarchical, and (iv) ring systems. There is always a common feature : file
transfers and control messages are always done directly between the peer offering a
service (e.g., file sharing) and the peer requesting it |75].

In a centralized topology the client contacts the server to inform it of its
current IP address and names of all the files that it is willing to share. The ring
is made up of a cluster of machines that are arranged in the form of a ring to act
as a distributed server. In a hierarchical topology authority flows from the root
name servers to the servers connected to the root and so on. In the decentralized
|75] topology, all peers are equal, hence creating a flat, unstructured network to-
pology. However, what really happens are mixtures of them, hence creating hybrid
topologies.

A fundamental problem in P2P applications is how to efficiently locate the node
that stores a particular data item. Therefore, some scalable indexing mechanisms
called Content -Addressable Networks (CAN) have been defined. CANs resemble
a distributed hash table of (key, value) pairs, which efficiently map "keys” onto
"identifiers”. Given a key, the CAN allows one to map the key onto a node. Data
location can be easily implemented by associating a key with each data item. Then,
the key data item pair can be stored in the node to which the key maps.

As a Content-Addressable Network, Chord [140] |76] |2] [3] [77] and Freenet [176]
are outstanding proposals. In terms of Metadata distribution, interesting technolo-
gies and ideas are offered by Mojo Nation [179] and JXTA Search [161] [57].

The Napster Project [177] uses the centralized topology [78], and Gnutella [178]
the decentralized one [78]. A good example of hybrid architecture [79] [80] is OpenFT
[180] . Other interesting P2P projects are,

— Oceanstore [181], a project which aims at providing a global-scale persistent

data store.

— FastTrack [182], is also a hybrid P2P architecture which is used by Kazaa.

— Kazaa [183], is a file sharing P2P system.

Our goal is to learn from these technologies and use them in the definition of the
distribution layer in our architectural proposal (next chapter). As we saw in chapter 2
medical data are geographically distributed and problems of access arise due to
confidentiality. A medical system can manage data by regions but communication
between regions can take advantage of a P2P approach. data by regions, whereas
communication between regions can use a P2P approach.

3.2.2 P2P vs Grid

Both environments are concerned with sharing resources within Virtual Organi-
zations (VO) ; however there are some important differences [18| between them :

— Grids provide services to moderate-sized communities and offer integration of

resources which allow one to deliver nontrivial QoS. In contrast, P2P deals with

65

thousands (or millions) of participants, but offers specialized services which are
less concerned with QoS.

— The P2P communities are composed of anonymous individuals with little in-
centive to act cooperatively. The Grid communities are established and have
VOs where users must be known and can be controlled, their engagement is
often-limited, and a membership exists.

— Grid systems integrate resources (cluster, storage system, database or scien-
tific instrument) that are more powerful, diverse, and better connected than
resources within a P2P network.

— Resource availability is higher and more uniform in a Grid environment than
in a P2P one.

— Grid applications are far more data intensive than P2P applications.

— Grid efforts have gone on to define a complex service-oriented architecture
within all services have standard interfaces and behaviors. P2P systems have
tended to integrate simple resources (individual PCs).

— Functionality requirements can be different, e.g., Grids might require accoun-
tability and the P2P system anonymity.

3.2.3 CORBA, DCOM and Java/RMI

The Common Object Request Broker Architecture (CORBA) [134] is an open
distributed object computing infrastructure being standardized by the Object Ma-
nagement Group (OMG) [191]. CORBA specifies a system which provides interope-
rability [104] [102] between objects in a heterogeneous, distributed environment and
in a way transparent [105| to the programmer. Its design is based on OMG Object
Model, which defines semantics for specifying the externally visible characteristics of
objects in a standard and implementation-independent way ; clients request services
from objects through a well-defined interface, by issuing a request (event) to the
object.

The central component of CORBA is the Object Request Broker (ORB). It
encompasses all of the communication infrastructure necessary to identify and locate
objects, handle connection management and deliver data. Its basic functionality
consists of passing the requests from clients to the object instances on which they
are invoked.

The Distributed Component Object Model (DCOM) is an extension of the Com-
ponent Object Model (COM) [192] [100] that allows COM components to communi-
cate across network boundaries. Traditional COM ! components can only perform
interprocess communication across process boundaries on the same machine.

The third most popular distributed object paradigm is Java Remote Method
Invocation (RMI) [193|, which relies heavily on Java Object Serialization. Each
Java/RMI Server object defines an interface which can be used to access the server
object outside of the current Java Virtual Machine(JVM) on another machines, e.g.,
an object running in one Java Virtual Machine (VM) is allowed to invoke methods
on an object running in another Java VM.

1The COM (Component Object Model) is a Microsoft technology for Windows-family of Ope-
rating Systems

66

While CORBA and DCOM are standards for defining interoperability, Java RMI
is only a set of protocols (developed by Sun’s JavaSoft division) that enables Java
objects to communicate remotely with other Java objects.

Object Management Architecture (OMA)

The OMA [191] embodies the OMG'’s vision for the component software environ-
ment, and guides standardization application to plug-and-play component software
environment based on object technology. An expanded vision of the OMA can be
found within the OMG’s Model Driven Architecture (MDA).

The OMA Reference Model identifies and characterizes the components, inter-
faces, and protocols that compose the OMA, while the Object Request Broker (ORB)
component enables clients and objects to communicate in a distributed environ-
ment : it provides an infrastructure allowing objects to communicate independent
of the specific platforms and techniques.

The CORBA Services component standardizes the life cycle management of ob-
jects and allows creation of objects, control access to objects and tracking of relocated
objects.

The Application Objects performs specific tasks for users. An application is built
from basic object classes, and new classes of application objects can be built by using
existing classes [124] [125] (inheritance).

These paradigms define interoperability between objects, while we are looking
for a highest-level vision of a complete distributed environment. Architectures such
as MDA /OMA [191] propose a high level overview of distributed systems (DS) and
focus on the global interfaces and integration layers.

3.2.4 Distributed Storage
File Systems

Multiple classes of file systems extend beyond the bounds of a single computer;
they include network file systems and distributed file systems (client/server file sys-
tems built around a network data access protocol), and also include parallel and
cluster file systems where many computers act as peers.

The Sun’s Network File System (NFS) [83] is a single network protocol for ta-
king local file system requests and redirecting them between computers. It does not
include an actual file system managing data on disks, but relies on local file sys-
tems at the servers to store data. Its prevalence has made it a platform for further
development.

Microsoft’s CIFS file system [84] defines a session-oriented data access protocol
with which clients connect to and mount a remote name tree into the local file system.
These network file systems are limited in that clients must forward all requests to
a server. Many factors limit performance in this environment, including network
data transfer rates, end-to-end latency, and the bottleneck of servers. Additionally,
servers cannot act in concert and therefore fail to provide load balancing, parallel
access, takeover on failure, or a uniform global name space for files and directories.

67

The Network Appliances Write-Anywhere File Layout (WAFL) [85] is a custo-
mized local file system designed for serving network file system requests. It adds
transactional capabilities to reduce latency and increase data throughput, and has
an efficient file system checkpoint mechanism to make data highly available and
speed the recovery process.

The Andrew File System (AFS) [86] and its successor the Distributed File System
(DFS)'? [87] expand the client/server file system concept to distributed file systems
by enhancing security and scalability, as well as providing a uniform global name
space for all clients. Distributed file systems provide a uniform global name space, so
that files appear with the same name on all clients, and all portions of the name space
can be accessed using file system methods. Servers cooperate to provide takeover
and load balancing features and management tasks, such as coordinated backup
and recovery. However, existing distributed file systems require servers to access file
data on behalf of clients and ship that data to the client.

NFS and CIFS are only distributed data access protocols, while AFS/DFS is a
distributed file system.

There also exists research in other kinds of file systems such as the Parallel file
systems '3 which offer a high performance alternative to distributed file systems. Ho-
wever, they rely on the high-speed communication facilities of supercomputers and
do not translate well to weakly connected environments without high-speed networ-
king hardware (e.g., a medical site). Hierarchical File Systems ** achieve scalability
and performance by building a file system over a distributed logical volume service ;
it makes many computers appear to share the same storage subsystem, shielding
the file system from many issues in distributed data management. Serverless File
Systems ' achieve scalability and performance for distributed file systems by remo-
ving the bottleneck of a centralized file server. Finally, Replicated File Systems 1°
replicate data and state among their many computers, to make data highly available
and fault tolerant. They are constructed on top of a group services middleware that
performs the replication, failure detection, and consistency protocols.

Such Distributed File Systems offer pertinent functionalities for managing distri-
buted medical data : performance, scalability, fault tolerance. However they require a
strongly unified system administration which is clearly incompatible with the reality
of the highly decentralized health organization in our countries.

Hierarchical Storage Management (HSM)

The massive explosion in data volumes represents one of the hot areas of com-
puting and currently one providing severe restrictions for computational growth.
Problems such as : (i) increasing computational performance, (ii) easier and hi-
gher bandwidth access to data from the Internet, (iii) sophisticated increases in
algorithms, and (iv) addressing the issues regarding legacy storage systems; are all

12There also exist CODA [201], which is a networked file system also based in the AFS
13¢.g. Tiger Shark, PPFS, and SPIFFI

l4¢.g. Frangipani, Cambridge

13e.g. xFS, JetFile

16¢.g. Calypso, HARP, high availability NFS

68

contributory factors leading to the requirement to provide the capability to offer
data repositories with high performance and high availability.

A response to this problematic is the Mass Storage Systems (MSS), and specially

its sub-type of Hierarchical Storage Management (HSM) systems.

A (HSM) consists [22] of several layers of storage media :

— a fast on-line primary storage, e.g., RAID disk system (10s to 1000s GB sto-
rage).

— off-line or automated secondary storage, is a slower media, possibly slower disk,
tape cartridges or cassettes, which could have automated access via robotics
(until some petabytes of storage per robot silo).

— off-site tertiary storage for archiving.

some characteristics of an HSM system are : (i) the data movement between

software layers is transparent and automatically handled by the system, (ii) the
storage capacity increases by layers, whereas, inversely, the cost and the performance
decreases, (iii) files are automatically recalled from offline when they are accessed,
(iv) all data (petabytes of data and billions of files of varying sizes) appears to be
on-line, (v) there is no need for a separate backup of the files, and only the most
recently referenced files are kept on disks, (vi) from the user’s point of view, the files
are always visible, and (vii) it is a cost efficient way to store huge amounts of data.

The most accepted standard for this kind of storage is the IEEE Mass Storage

System Reference Model (MSSRM), version 5 [50], and it is used specially for HPSS
and Storage Tank.

The most significant HSM for High-Energy Physics (HEP) community, at the

moment are :

— Castor [132], the HSM system at CERN. It has good scalability, high modula-

rity to ease replacement of components, and availability to work in UNIX and
windows-NT systems.
The Castor user’s client has two components : (i) the stager to trigger the
migration and recall of data, and (ii) RFIO (Remote File I/0) to access the
data on a remote disk pool. It has been stress-tested at CERN by sending
100TB of data at an average rate of 85 MB/s. Its average tape moving traffic
is about 30 TB per week for the Alice Data Challenge experiment.

— Enstore [185] [82], a tape robot management program developed to handle

large volumes of data at Fermilab (USA). It was designed to give users access
to tape data as conveniently as to files on their native file system.
The system scales very well in I/O, typically a separate mover !” handles each
tape drive and transfers are delegated to a specific mover. So far, up to 10 TB of
daily data movement has been demonstrated. More general access is provided
through a disk cache. This is an area of ongoing work in a collaborative project
(dCache) |186] between Fermilab and DESY [194] laboratories.

— EuroStore [184], which addresses the problem of handling the large volumes
(several PBs per year) of data. It consists of two major parts : the parallel
file system (PFS) and a HSM developed by DESY. The HSM itself, which is
based on the IEEE mass storage model, interacts with the robotics and any
physical storage devices. It was developed for dealing with data expected from

17A mover is a software component in charge of moving file between storage layers

69

LHC experiments at CERN.

— HPSS (High Performance Storage System) [133| [81], which is a HSM system

that provides services for very large storage environments. Its network-centred
design (based in the IEEE Mass Storage Reference Model), allows data to be
moved from an intelligent disk or tape controller to the client. HPSS Movers
are claimed to deliver data at the full device speeds (about 50 MB/s) single
stream. The system allows for parallel data streams from multiple storage
devices. It is claimed to give aggregate throughput rates of about 1 GB/s.
Data transfer takes place directly between the client and the storage device
controller. HPSS was designed for the massive parallel processors where large
data files and high transfer rates (ca 100 MB/s) are often called for. The system
is highly scalable.
With HPSS, files can be (i) stored, retrieved, copied, moved, replaced or dele-
ted, (ii) organized in simple or complex tree structures, and (iii) shared with
selected individuals or an entire user community. Once files are transferred
to HPSS, they are stored in an archival system. HPSS transparently manages
the storage hierarchies, migrating, purging and caching files as required based
upon the dynamically changing environment.

HSM are specially used in data-intensive scientific experiments like physics of
particles, meteorology and astrophysics, but due to the increasing volume of data, it
is becoming a necessary tool for biology, genetics and medical imagery. However, this
is a very expensive technology for hospitals and medical centers. A medical system
does not offer storage services as a HSM does, but its distributed structure, and its
possibility of accessing multiple data repositories, can enable the cooperation with
existing HSM in a direct way or through a Storage Element of a Data Grid. In this
way, the system we intend to develop, by moving data between medical sites, servers,
and a grid or HSM, de facto offers a service of data storage.

3.3 Images Storage

3.3.1 DICOMS3

The Digital Image and COmmunication in Medicine DICOM [142] ¥ speci-
fication has emerged as the standard for medical image storage [49]. It facilitates
interoperability of medical imaging equipment by specifying protocols for medical
devices, syntax and semantics of commands and associated data for transmission
information ; it facilitates operations in a networked environment [49].

DICOM describes an image format, a communication protocol between an image
server and its clients, and other image related capabilities. On top of such a standard,
Picture Archiving and Communication Systems (PACS) can be deployed for allowing
managing of data storage and data flow inside hospitals.

Some popular software systems which implement the DICOM3 standard (DI-
COM toolkits) are CTN and DCMTK. The DICOM Central Test Node Software
(CTN) [135] is a DICOM implementation which was designed to be used at the

18DICOM is an evolution of an old standard called ACR-NEMA

70

RSNA (Radiological Society of North America) annual meetings to foster coope-
rative demonstrations by the medical imaging vendors. The goal was to provide a
centralized implementation to test vendor’s products on a common plate following
the DICOM standard. CTN is a medical data and images storage system (using
DICOM 3 format), but is not a Mass Storage System (MSS). DCMTK (DICOM
Toolkit) [136] is a collection of libraries and applications implementing large parts
of the DICOM standard for medical image communication. It includes software for
examining, constructing and converting DICOM image files, handling offline media,
sending and receiving images over a network connection, as well as demonstration
image storage and worklist servers. While CTN is stronger in its server implementa-
tion, DCMTK offers a better development toolkit. There are others toolkits such as
Osiris, Java DICOM Toolkit, DICOM DLL, AN/API DICOM Toolkit and DICOM
Suite ; due to the wide acceptation of the DICOM standard we will use it as reference
for our applications.

3.3.2 PACS and RIS

PACS (Picture Archiving and Communications System) are systems composed of
various components for transmitting, storing, displaying and archiving patient data.
Usually PACS distributes images and its associated reports throughout a medical
system, and integrates it to the Hospital Information System (HIS) or Radiological
Information Systems (RIS).

A PACS should allow the functional ability not only to distribute images to
the requestor but also communicate to physicians for patient scheduling, to down-
load patient demographics to modalities, to track image location, and to assemble
collaborative material necessary to interpret the image.

The PACS archives the images and allows image transfers. The HIS /RIS contains
full medical records : image-related metadata and additional information on the
patient history, pathology follow-up, etc. Although some vendors propose integrated
PACS and HIS/RIS, there exists no open standards for the data structure and the
communication between the services in this architecture. Moreover, they are usually
designed to handle information inside an hospital but there is no system taking into
account larger data sets nor the integration with an external component such as a
computation /storage grid.

PACS makes use of backup and archival systems, and this is where a link to Mass
Storage Systems (MSS) comes in. A PACS is not a MSS, but the same data-intensive
constraints apply in using a PACS system, as that of a MSS one.

There exist many PACS systems installed in the world. We can make reference
to The Geneva PACS, The Hammersmith Hospital PACS or The Sheba Hospital
PACS in Tel-Aviv.

In this thesis, we will assume that image data within a hospital are stored in a
DICOM compliant Server or PACS so that we can make use of DICOM protocols
to retrieve raw image data and the associated metadata.

71

Chapitre 4

Distributed System Engines
(DSE Architecture)

“.. the key concept is the ability to negotiate resource-sharing arran-
gements among a set of participating parties (providers and consumers)
and then to use the resulting resource pool for some purpose.”, Ian Fos-
ter, Argonne National Laboratory, USA

72

73

Summary 4

We define an architecture which addresses the problems of Distribu-
ted Computing and Medical Image Processing, and we then describe its
usefulness for building systems.

The architecture (Distributed System Engines (DSE)) proposes a way
of building distributed systems (DS) in an environment with strong requi-
rements for high performance, and with characteristics of extensibility,
scalability and openness. These DS are composed of engines. The ar-
chitecture has a pyramidal definition through five layers which increase
in semantic significance : (i) DSE®, the lowest level, defines a message
passing interface in charge of the transmission of messages between mul-
tiprocess programs, (i) DSE', defines a transaction structure built over
the message passing level. (i1) DSE?, offers distributed facilities, (iv)
DSE? is the application layer, and also offers a programming interface
(API) so that a user application can be built on top of the underlying
distributed system, and (iv) DSE*, the user layer, offers high level access
to data, metadata and services.

Furthermore, the DSE architecture has an horizontal definition by
each one of the layers, and is based on a multi-process structure which
enables the exchange of messages between processes. In this way, it is
possible to define entities of a higher level of semantic significance, called
Drivers, which deal with different kinds of transactions : queries,
tasks and requests. We define also a different kind of driver per each
kind of defined transaction. In a higher level, an aggregation of drivers
allow us to define services. This architectural framework of drivers and
services eases the design of components of a Distributed System (DS).

There ezist two big groups of layers : middleware (first three ones)
and application (last two ones). The middleware layers are implemen-
ted in a prototype (DSEM), and then used for developing a medical
application (Distributed Medical Data Manager (DM?).

74

75

4.1 Our Project

A classical definition of a Distributed System (DS) was given by Mullender [1]
as “several computers doing something together”. Thus, a Distributed System (DS)
contains multiple computers, interconnections, and a shared state which comes from
the computers cooperation [1].

Our view of a DS is a set of intercommunicating and cooperating virtual com-
ponents which we divide between engines and external tools and services (also
called machines). Each engine, by itself, is a complex component composed by a
set of independent local processes ', which interact by exchanging messages, and
connected to the external world (tools, services and other engines).

We propose an architecture (Distributed Systems Engines - DSE) that
deals with designing and implementing these kinds of engines in an environment
with strong requirements of high performance. Our architecture modelize not only
the DS, but also the internal structure of each one of its components (engines). It is
based on the definition of four different kinds of drivers which manage three types
of entities : messages, transactions and tasks. This decomposition allows us to define
highly scalable and extensible engines, which are easily adaptable to the design of
systems dealing with medical hybrid queries.

We have also implemented a prototype of the architecture (DSEM, or DSE the
manager). It is composed of a set of libraries, APIs, tools and drivers (middleware
style), which allow us to develop systems dedicated to medical image processing, and
especially to the resolution of queries by content. These systems aim at managing
huge volumes of images and metadata in a distributed environment and interface
computing and storing Grids.

The architecture (DSE) is analyzed in this chapter, its prototype implementation
in chapter 5, the prototypes applications and the performance concerns in chapter
6.

4.2 Pyramidal architecture

We understand a Distributed System (DS) as a set of distributed system engines
(DSE) ? interfacing external machines :

DS « {DSE} U {machines} 3

The machines are defined as external software elements to a DS. They represent
tools and services, and there is not possible to modify them : they exist as they are,
and all we can do is to interface them. Usually, they represent tools and services

'In this document we will not make any difference between processes and threads; we consi-
der that question as an implementation problem which does not strictly concern the architecture
definition

2For simplicity, in this text we refer to engines instead of distributed system engines.

3A distributed system is the union of a set of engines and a set of machines (external tools and
services).

76

which the engine can use, e.g. a cache utility, a database service, a grid computing
service, etc. The Engines are complex components, composed of interacting local
processes which exchange messages between them, and which also have interactions
with external machines and additional engines. An FEngine is the basic unit of a
Distributed System, or a brick to build the D.S.; but in its internals, each engine is
a set of interacting entities which we define below as Drivers.

The engines are the objects that we develop for building the infrastructure of one
DS. The machines are the external components to interact with (tools and services).

DSE is a multilayer architecture specially designed for building engines able to
manage distributed systems. The proposed architecture goes through five semantic
layers, from the message layer to the application layer.

The different layers have an increasing level of semantic significance and allow
building systems (at the high layer) which take advantage of the lowest layers. This
architecture aims at providing transparency, scalability, extensibility, and enabling
high performance implementations.

The DSE architecture uses the message passing paradigm - in its lowest layer - to
interconnect processes, and takes advantage of the classical concept of transaction
in order to increase the semantic significance of interacting messages. It integrates
existing systems and takes advantage of these services.

DSE4: user N

DSE3: application
DSE2: distribution

DSE1: transaction

Level

Semantic

DSEO: message passing

F1G. 4.1 — DSE layers

The architecture has a vertical (pyramidal) definition (figure 4.1) through five

layers :

— DSE? : The lowest level, defines a message passing interface in charge of the
transmission of messages between multiprocess programs. Its goal is to reach
the target process in an efficient way and as quickly as possible.

— DSE! : This level brings atomic operations (transactions) to process complex
requests composed of several messages. Virtually all methods for specifying and
reasoning about concurrent and distributed systems are based on a model of

7

computation that incorporates some notion of atomic actions [1] . DSE! defines
a transaction structure built over the message passing level, which offers the
ACID properties : Atomicity, Consistency, Isolation and Durability [1].

— DSE? : Takes advantage of the two lowest levels in order to offer distributed

facilities for dealing with distribution over several engines.

— DSE? : Is the application layer. An application integrates communicating com-

ponents build on the lowest layers.

— DSE* : Is the user layer. It allows one to define external interfaces.

The first three layers deal with middleware functions, and the last two are appli-
cation oriented. In this document we will refer to middleware layers or application
layers in order to group the first three layers on the last two.

The detail of each layer corresponds to an horizontal definition of the architec-
ture, and is discussed in sections 4.3, 4.4, 4.5, 4.6 and 4.7.

4.3 DSE' : Message Passing Engine Layer

4.3.1 Message Passing Technology

Message Passing (MP) is a programing paradigm in which the user directly
controls the flow of operations and data within his/her parallel programs. A message-
passing library allows the programmer to explicitly order each processor what to do
and provides a mechanism for transferring data between processes. It is widely used
in the field of parallel computing due to the following advantages :

— Hardware match of separate processors connected by a communication net-

work.

— Functionality for expressing parallel algorithms.

— Achievement of performance by giving the programmer an explicit control

on the data locality and transfer.

Its main drawback is the responsibility it places on the programmer. The pro-
grammer must explicitly implement a data distribution scheme with all interprocess
communications and synchronizations. In doing so, it is the programmer’s responsibi-
lity to solve data dependencies and avoid deadlocks and race conditions. At present,
middleware layers that compose Grids and huge Mass Storage Systems, are built as
multiprocess systems which communicate between them by issuing messages.

A common use of message passing, is for communication in a parallel supercom-
puter. A process running on one processor may send a message to a process running
on the same processor or another. The model also fits well on clusters of works-
tations which are composed of separate processors connected by a communications
network, or within computers running many subtask processes where shared memory
mechanisms can be used in order to implement MP.

This paradigm allows an application to be structurally separated in different
processes and to have communication by issuing messages between them [36] . At
the moment the most popular libraries are PVM (the Parallel Virtual Machine [36])
and MPI (Message Passing Interface [43]). There also exist communication libraries
developed in France, as PM? [113] and Madeleine 1T [114].

78

An engine can be developed by using the message passing tool that the developer
wants, however, our implementation (see section 5.2.1 in the chapter 5) uses a pro-
prietary library which will be presented in the next chapter. Similarly, we propose
a daemon for dealing with the routing of messages, called MPK (Message Passing
Kernel) ; the conceptual definition is described below (section 4.3.2), and in the next
chapter (section 5.2.2) a prototype implementation is also showed.

PVM

PVM [141], written at Oak Ridge National Laboratory in 1989, is a portable hete-
rogeneous message-passing system. It provides tools for interprocess communication,
process spawning, and execution on multiple architectures. The PVM standard is
well defined, and PVM has been a standard tool for parallel computing for several
years.

PVM is built around the concept of a Virtual Machine which is a dynamic collec-
tion of computational resources managed as a single parallel computer, and provides
heterogeneity, portability and encapsulation of functions [35].

MPI

MPT [39] [43] [139] has come into the mainstream more recently than PVM,
but it is a mature standard that has been available for several years. The most po-
pular implementations were written at Argonne National Lab (MPICH) and Ohio
Supercomputing Center (LAM/MPI). MPI is intended primarily for data-parallel
problems [17]. Therefore, it does not have the flexibility of PVM dynamic process
spawning, but its collective operations (like gather-scatter operations) and asyn-
chronous message passing capabilities (asynchronous sends and receives) are much
more sophisticated [37] and configurable than those in PVM. MPI was developed
to serve as a common standard, bringing together years of research and experience
with message passing.

There exists a new specification (MPI-2) which extends the current one (MPI-
1.2); it includes the definition of interfaces in key areas not covered by the MPI-1.2
specification, such as dynamic process management and one-sided communications.

MPT is expected to be faster than PVM within large multiprocessors 38| and has
many more point-to-point and collective communication options than PVM. MPI is
based only in Message Passing features and does not implement the concept of Vir-
tual Machine ; however it has collective communication routines for communication
among groups of processes, and the ability for specifying communication topologies
[35].

4.3.2 Layer O : Definition and Structure.

At this layer a Distributed System Engine (DSE) is defined as the union of a set
local Processes and a Message Passing Kernel (MPK) :

79

DSE’ « {processes} U MPK *

In layer O processes collaborate by exchanging messages through an intermediary
which is called the message passing kernel (MPK). These processes only exist in a
single host, and therefore an IPC mechanism is sufficient for interaction.

The Message Passing Kernel (MPK).

The message passing kernel (MPK), is an entity in charge of providing routing
of messages between local processes. The communication between the processes of
an engine and the MPK is implemented by IPC (Inter Process Communication [88|
[89]) mechanisms.

The main thing that a MPK does is to route messages from process to process.
All the processes in between have different types and functionalities. They allow
the user to build high level functions and to get access to applications which reside
outside the system, that is, in the local machine, in the local network (LAN) or in
the WAN.

The MPK uses IPC mechanisms due to the fact of all the processes using it are
in the same single host. In order to deal with the internal routing of messages, the
IPC is very fast because it is based on memory accesses, and it is sufficient because
at this level no network communication is required.

In order to improve performance the MPK must :

— process messages in parallel

— minimize the queue of messages

— have knowledge of different instances of target processes in the engine. This

allows the MPK to select the best instance for sending a message ; e.g, a driver
as the onesdefined below in section 4.4, can be implemented as a multiprocess
entity, so when a message is sent from a process to this driver, the MPK can
redirect it to the best process in the driver, which means, the one which is less
busy.

The MPK does not send messages to the network, it only routes messages between
local processes. These processes, as defined below, can issue messages to the network
instead of the MPK.

Process types

The system assumes that there are processes which receive messages from the
network and other ones which issue messages to the network. The different kinds of
processes exchange messages between them in order to process a query (represented
as an input message) which has arrived to the engine. Functions as reading or wri-
ting to the network, or to an IPC mechanism, are distributed in different kinds of
processes.

4The formulas that we use in the definition of the different DSE layers do not have a mathe-
matical semantic, these are only used to allow the reader having quickly a compacted overview of
the layer.

30

F1G. 4.2 — Message Passing Kernel and Processes Types
The figure shows the network side at top and bottom. The local side (IPC) is shown in sides left
and right. Processes are represented as circles. Inside the square is the MPK domain.

The figure 4.2 represents an engine in its lowest layer, the one where only an
exchange between local processes happen. Circles represent local processes, e.g.,
running in the same computer. The square outbounds the engine and its interfaces.
Its interior and the vertical dotted lines represent the IPC mechanism, like share
memory. The horizontal lines at top and bottom, represent the interface with the
network. The arrows represent the direction of the messages. As shown in figure 4.3,
a process on top of the figure receives a message from the network, and then delivers
additional local messages to the other processes of the engine (in both right and left
sides of the figure, or on the bottom side for reaching the network again).

The defined types of processes are :

— Network _in/ IPC_out processes (NIIO). In the top of the figure 4.2 are those
processes which have the ability to receive inner messages from the network.
These processes are the entry points to the system, and although they also
send response messages, the arrows in the figure 4.2 show only its main cha-
racteristic : the receipt of requests. In the other direction, these processes do
not receive requests from the system itself, their IPC communication work
principally in the output direction, issuing requests to another process. The
IPC communication is made through the message passing kernel (MPK).
Communication Daemons are examples of these types of processes. Query Dri-
vers, as defined below, can be also implemented with these kinds of processes.

— IPC _in / network out processes (IINO). Those processes (bottom side of fi-
gure 4.2) receive messages by IPC mechanisms through the message passing
kernel (MPK), and send messages to the network. As in the above case, the

81

arrows in the figure show only the main characteristic, which is the issue of
requests into the network, but they can also receive answers, e.g., acknowledg-
ments.

An example of this type of process are drivers for managing external services,
such as a database service or a grid service, which are in the network side, and
which usually are servers waiting for messages.

— IPC_in processes only (IIO). These are processes whose principal characteris-
tic is receiving requests -by IPC mechanisms- from local processes. These are
useful for implementing tools responding to the request/response paradigm.
See the left side of the figure 4.2.

A console tool or a monitoring tool, are examples of implementation of these
kinds of processes.

— IPC_in / IPC_out processes (IIIO). These are processes in the core of the
system, which only know about local processes. They receive requests from,
and issue also requests to other processes using IPC mechanisms (through the
MPK kernel). See the right side of the figure 4.2.

An example of this type of process are applications having local communication
with the engine, as for example a Web Portal.

Message flow.

The flow of the messages (figure 4.3) goes from the top side through the bottom
side of the figure, but, in between, messages can be pre-processed by processes in
both the left and right side of the same figure. This means that a message gets into
the system using an entity multiprocess of the type NIIO, and its process can deliver
additional messages to other processes I110, 110. These latter answer directly to the
requesting process or may send a request into the network (through a IINO process)
to another remote process (other engine or an external service).

Machines.

The machines are external components to an engine, which can be running in
the same computer or in other one accessible through the network. In other words,
a machine represents a service, a tool or an application, which is accessed by the
local engine. A machine can be also a client issuing requests to an engine.

In general, we define client machines and server machines, depending on their
functionality :

— Client machine. Any machine on the network, able to get in touch with a net-

work _in / IPC_out (NIIO) process. This means that an external application
(in the network side) issues requests to a distributed systems engine (DSE).
An example of such a machine could be another engine, or a grid component
which is looking for access to a medical image.

— Server machine. Any machine on the network, which could be reached by an
IPC _in / network out (IINO) process. So, a distributed systems engine (DSE)
could reach external applications (machines) in the network side. An example
of such a machine could be a PACS, a DICOM image server.

82

input messages input messages input messages ,

O O QNI |cn)etwork:'§

1

i

i

i

i

i

i

i

i

i

1

i

. 1

cIVED TN - H
K A EE PP 1
K c- @ H
. i
1

i

1

i

i

i

1

i

i

i

i

i

T i i 1 1 i 1

§ networ k I I I IO
o U %) O
output messages output messages output messages

F1G. 4.3 — Message Flow.
The arrows represent the direction of the messages. In this figure there are two instances of the
MPK.

An engine must manage different types of machines and different instances of
each one; e.g, a machine type can be a DICOM server, and an engine must be able
to have connection with different servers of this type, which means that the engine
can manage a different DICOM server at the same time. In the same way, another
engine is seen as an external machine.

Special processes.

Special processes are another type of external component to the engine, but
running in the same computer and also having an IPC communication with the
engine.

They are also client and server processes as follows :

— Server processes. A process of type IPC_in / IPC_out (ITIO) is able to re-
ceive an incoming messages from a distributed system engine, and produce a
response.

— Client processes. A process of type IPC_in / IPC_out (ITIIO) is able to issue
a message into a distributed system engine, and it then waits for a response.
As an example, a Web Portal could be an external application, running in
the same host of the engine, and having local IPC communication with the
engine. This Web Portal can be a multi-process application, which has Client

83

Processes and Server Processes to the engine. The former ones make requests
to the engine, and the second ones answer to requests from the engine (e.g.,
status processing).

What makes the difference between machines and special processes is the kind of
communication between them and the engine ; while a machine always has a network
connection with the engine (e.g, sockets), the special processes use IPC communica-
tion. They are two different kinds of components which can interact with an engine,
whatever their functionality. For example, an engine can interact with a local cache
service by using IPC mechanisms, but it can also have a remote communication
with a data grid service for storing sets of images, which is also a kind of cache for
the engine. In the first case, the cache service is a set of special processes, in the
second, it is a machine. This versatility is mandatory when dealing with external
components. Remember we do not have control on the development of them : they
are as they are.

Transparent machine and processes connections.

The architecture enables the connection of machines (see figure 4.4) as follows :

— Client machines and server machines.
An external machine gets in touch with a NIIO process in order to request a
message processing which, transparently, is delivered to a server machine for
processing. This may imply to make a pre-processing of the messages before
accessing that server machine. See figure 4.4-i; e.g, a remote engine (client
machine) queries another engine for getting access to an image in one hospital
(server DICOM, or server machine)

— Client machines and server processes.
An external machine sends a message to a NIIO process. This message is
transparently issued to a server process for processing. See figure 4.4-ii; e.g,
same as the example above, but the engine looks for the image in the cache
service instead of the remote DICOM server. We assume that our cache tool
uses only IPC communication, so it is a special process.

— Client processes and server processes.
An IIIO process sends a message to another ITIO process in order to colla-
borate. See figure 4.4-iii; e.g; a security tool (client process) asks for a cache
service (server process). We assume that both have IPC communication.

— Client processes and server machines.
An ITIO process sends a message to an IINO process in order to access a server
machine. See figure 4.4-iv; e.g, a security tool asks for access to a database
service, which is a remote server machine (e.g., MYSQL daemon).

4.4 DSE! : Transaction Layer

At this layer a Distributed System Engine (DSE) is defined as a set of Drivers
(defined above) :

84

Client Maching Client Maching

o : Q Q QNH(";W:% o : Q O C)Nngwk :Q

1 ICllent Process, 1 ICllent Prooe$.
O : PK : Server Process, O : : Server Process,
O ; [) O MPK ; @

1 1 1 1

1 1 Q
Q LE)-! network \ : I I IO O §-! network : I I Io

IINOQ Q Q\ll) IINOQ Q Q

i) (ii)

network
Q Q QNIIO :’9 o Q O ONHSWK:Z_

I |entPr00e$.
/I

Client Process,

Server Pr Server Pr
\ : ver Process, Q MPK : ver oce$.
1 1

O O
network : “IO Q .§-_ network : IIIO
IINOQ Q Q IINOQ Q C\I?

(ii) (iv)

F1G. 4.4 — Machines’ connection
(i) Client Machine with Server Machine , (i1) Client Machine with Server Process, (i) Client
Process with Server Process, (iv) Client Process with Server Machine. The black circles represent
special types of processes : server and client.

—~~

o

MPK

I
1
1
1
1
1
1
1
3'

O OO0

DSE! +» {Drivers}

On top of the simple message passing layer, DSE! defines atomic operations
(transactions) made of multiple sub-operations. A transaction succeedes if, and only
if, all sub-operations succeed. If a failure occurs, the system must be left in a coherent
state. It must offer the ACID properties : Atomicity, Consistency, Isolation and
Durability [1].

We deal with three types of transactions (see figure 4.5) which we call Queries,
Tasks and Requests. This allows us to deal efficiently with the complexity of transac-
tions which involve multiple calls to external services and engines. Queries are a set
of Tasks and Requests which can be executed in sequence or in parallel. Similarly,
Tasks are a set of Requests executing concurrently to shorten the processing time.
Requests are a set of sequential messages to a service in the network side. Queries,
tasks, and requests are managed by a special type of processes that we call DSE
Drivers, but for simplicity in this document we will refer to them by using just the

85

term Drivers. A Driver is a process (or a set of processes) handling different kinds
of transactions instead of single messages.

The processes which were described in layer 0 (DSE?) are the base for layer 1.
Drivers are multi-process communicating entities, so a set of processes of layer 1 have
the highest semantic significance in this layer (DSE') and become drivers. Figures
4.6 also represent the local engine, but are composed as a set of interacting drivers,
depending on their type as is described below. Additionally, the figure 4.8 shows the
differences between the different layers.

query (QU) task (TK) request (RQ)

-

K RQ
x P

/N .
T®
@@ ro

el Ml Mt}

F1G. 4.5 — Transactions’ types
(i) Query : a set of tasks and requests, (ii) Task : a set of requests, (iii) Request : a set of
messages to the network. The circles represent what compose each type of transaction, and the
arrows represent the order of execution. Thus, splitted arrows represent execution in parallel, and
row of arrows represent sequential execution.

4.4.1 Driver types

— QUeries Drivers (QUD) are processes managing a whole transaction (query)
made up of a set of Tasks and Requests. A query could imply concurrent or
sequential access to different external services, or just accessing local tools. The
tasks which compose the query, are solved by a task driver (described below),

86

and the requests by a request driver (also described below). This means that
for solving a query, a QUD must access (by delivering messages) other drivers
in the same engine, even if the solution of part of the query complies one to
access an external service in the network side.

In this way, an access to a TKD or RQD depends on the nature of the query,
and is not mandatory. A query could be implemented as accessing a TKD
but also having direct access to a RQD. This means that a query could be
implemented without tasks, but only with requests. Meanwhile, the QUD can
access the available tool drivers in order to execute local functions.

For example, a query of a 3D image needs to localize, transport and assemble
the image files into an unique file (an image can be represented as a set of
DICOM files or slices). So, we can define a task for getting the image (locali-
zation and transport), and another for assembling the image. This first task is
transparent and solved by a TKD. The second, can be solved by using a local
tool.

TasKs Drivers (TKD) are processes in charge of a specialized part of a query
(or task). This could imply one must get a parallel access to an external ser-
vice through a set of request drivers. TKD offers parallelism, distribution and
transparency as a service which could be used by a QUD; e.g, a QUD requests
a file to a TKD, but it does not check the localization of the file : the TKD
can get it from the cache, from a local hospital, or from a remote hospital
(accessing another engine) in a transparent way to the QUD. In order to find
the file, the TKDs uses the RQ)Ds available in the engine.

ReQuest Drivers (RQD) are in charge of accessing remote components such as
other engines and external servers. They solve low level issues such as connec-
tion management. These drivers transmit messages and receive responses that
they edit before sending them to the calling processes °.

For example, a RQD can have access to a database service (Spitfire [138],
MYSQL), so it manages the connection, the session opening, and uses the
paradigm answer /response in order to solve the transaction. In these cases,
the request and its response are single messages sent each way, so the response
to the TKD or QUD is basically the same response message. In contrast, in
the case of a RQD which deals with a DICOM server, a request is composed
of a set of messages, as is described in the DICOM protocol [49] ; so the driver
must solve the whole request before answering to the calling driver.

TOol Drivers (TOD) are processes performing internal operations that are in-
dependently implemented for reasons of performance and modularity. Examples
of such processes are the caching of requests, files and results, logging, secu-
rity checking, image processing and manipulation of console operations. Tool
drivers can be accessed from QUD, TKD and RQD.

These drivers use the processes of the lower layer and coordinate them in order
to develop higher level functionalities and semantic significance.

5In order to improve concurrency and to allow an easy modular software development, there is a
1 to N relationship between the processes of QUDs and TKDs, and similarly, a 1 to M relationship
between the processes of TKDs and RQDs. This means that a query can be split into N tasks, and
that a task can access in parallel an external service through a multiprocess RQD

87

Ce
Oe
Ce
Q
C
UQ
=
= i
_|
(@)
O

& BNCRNGIE O
Q<—:/ \:—>O O MPK =0
O i 2 O L Q

ng E I._
Qéi% <>
O .

OO
AL

3
20

(iii) (iv)
F1G. 4.6 — Drivers

(1) Query Driver (QUD), (i) Request Driver (RQD), (iii) Tool Driver (TOD), (iv) Task Driver
(TKD)

An application developed as an engine works as follows : (i) A message is received
by a query driver and a query is initiated, (ii) The query starts different concurrent
tasks, using independent processes (TKD), (iii) Each task access the requests drivers
(RQD) so that it can reach the external services, (iv) The request drivers (RQD)
open connections and send messages to the external services, (v) Each driver uses
the tools it needs (TOD).

Revisiting the examples described above, we can summarize that a client machine
sends a query to the engine (e.g, get a 3D DICOM image), which is received by a
QUD. The query driver gets the slices (which compose the image) through a TKD,
and once it retrieves them, it uses a TOD for assembling the slices into a single
image. The TKD uses different RQD for solving the task : (i) accesses a database
service through a MYSQL RQD in order to get the localization of files, and them
uses the DICOM RQD in order to get the files (slices) from a DICOM service. An
application of this type will be analyzed in detail in the next chapter.

4.4.2 External Applications.

External Applications are applications which run on the same host as the engine
and which have IPC communication facilities with the engine instead of network
communication. They are composed of special processes as were defined in section

38

4.3.2; therefore, external applications are the next level of semantic significance for
the Special Processes from the layer 0.

These applications are also independent of the engine, which means, we do not
have control over them, the only thing we can do is to interface them, and the
interface they offer is IPC communication. They are also divided into server and
clients.

— Server applications.

External processes to the DSE but located on the same host, which are able
to receive incoming messages from a distributed system engine, and produce a
response. A server application is based on IPC_in / IPC_out processes which
could start interaction with other processes into a DSE.

— Client applications.

External processes to the DSE but located on the same host, which are able
to issue a message to a distributed system engine, and wait for a response.

In section 4.3.2 we have proposed a cache as an example of special processes. What
really happens is that the engine sees an external application, the cache, which is
accessed by IPC mechanisms, and which is composed of special processes. In our
example, this cache is a multi-process entity.

4.5 DSE? : Distribution Layer

At this layer a Distributed System Engine (DSE) is defined as the union of
different sets of Internal Tools, Services Drivers and Services Daemons :

DSE? +» {Tools} U {Service Drivers} U {Service Daemons}

DSE? brings distributed facilities on top of the two lowest levels. This layer
adds semantic functionality to the transaction layer (DSE') in order to convert
classical atomic transactions into distributed transactions, which also have the ACID
properties, but additionally are spread over a distributed system.

The main objective of this layer is to offer collaboration between different DSE
in order to build a Distributed System with characteristics as :

— Concurrency : It increases the efficiency of a DS. True concurrency comes from
the separate activities of users, the independence of resources, and the separate
location of server processes in the system.

— Transparency : It conceals the users and the applications programs from the
separation of components.

— Location Independence : Users can retrieve and update data independently
from their storage site.

— Distributed Query Processing : Users can query information residing on ano-
ther node. The query is executed at the node where the data is located.

— Distributed Transaction Management : A transaction can update, insert or
delete data from multiple sites. A transaction in this layer has properties of
distribution while in DSE! it is local.

89

— No reliance on a central site : All sites are treated as equals. Each site owns
its data.

— Local Autonomy : Data are owned and managed locally. Local operations
remain purely local. One site in the distributed system does not depend on
another site to run successfully.

The distribution layer is in charge of localizing data and services (sometimes re-
sources), transmitting requests to proper hosts, collaborating between DSE engines,
etc.

However, a DSE aims at taking advantage of external resources such as those
provided by a Grid (specially storing and computing). In this way, a Grid is a source
of resources for a DS composed of DSEs. A Grid aggregates resources, across multiple
domains and offers resources sharing to its users.

We talk about Grid resources in the sense that they are huge, vast, and expensive.
Usually, a DS has that kind of resources but only for limited or local use ; thus, having
access to the Grid resources becomes usefull.

A Grid can become, then, a partner to our DS, in the sense that it provides high
computing and huge storage capacity (if required). A DSE must provide an interface
to the Grid in order to have access to those resources, and such an interface can be
developed as a Driver Service - SDR (described below).

4.5.1 Components

This layer defines new components SDA, SDR and Tools (described below) by
using the ones (from the layer 1) which deal with network communications (Query
Drivers, (QUD) Requests Drivers (RQD)), and the Tool Drivers (TOD). We will
refer later in this document to internal services, when talking about the SDA (Service
DAemons) and SDR (Service DRivers). The figure 4.8 shows the differences between
the different layers.

Service DAemons (SDA)

A DSE offers services to Client Machines on the network side, and these services
are accessed by issuing Queries to the Service Daemons (SDA). A Service Daemon
is composed of 1 or many Query Drivers (QUD) of layer 1 (see figure 4.7), and deals
with all the problems related to accessing the service : (i)Communication transport
protocols as HTTP, XML and others (ii) Security, (iii) Access to the service, (iv)
Execution of Queries.

The Service Daemon can be a Grid Service, a Web Service, or simply a Daemon
which offers a special service to a set of users; e.g, a SDA can offer the service of
hybrid queries, but it can be composed of different RQD in order to manage different
phases or possibilities in the solution of such a query. For example, each one of
three RQD can accept queries for three different protocols of messages (proprietary,
SOAP, OGSA), even if the query is the same and the solution will be the execution
of the same transaction. This enables the engine to solve the query by accesing three
different external services, each one having different interfaces. The fact that one has
three RQD does not mean that there are three services : there is only one service
implemented with three RQD.

90

Service DRivers (SDR)

A SDR is a group of RQD in charge of solving different possibilities of a request,
by accessing external machines. A DSE in its internals could need to access exter-
nal services for getting data or for using resources (store and computing), but the
diversity of services can imply the use of different RQD and SDR.

For example, an application can manage different image formats such as DI-
COM3, NEMA 6, GIF, INR, or even a RAW format. So, it can be defined an SDR
for offering an internal service (to the engine) of image retrieval, which can be com-
posed of two request drivers, the former for managing the protocol DICOM3, and
the second for FTP 7. This Service Driver goes into the network in order to contact
the appropiate external service (DICOM, FTP).

In our example, although there exist two RQD, they enable only different ways of
solving the same request : to retrieve an image. This is different than the possibility
of having different instances of the same RQD (layer 1), which represent connection
with different server machines (layer 0). This means that each one of several RQD can
have a different instance dedicated to the connection with each one of the DICOM
servers (hospitals). However, there is only one SDR. Another example of SDR can be
the database service ; it can be composed of different request drivers depending of the
database engine, e.g., one RQD for Spitfire [138] &, and another one for MYSQL ; or
even, Grid SDR, having a RQD for DataGrid/EGEE, and another for MicroGrid °.
Similarly, different services of a Grid, such as Storage Element (SE), Replica Catalog,
etc, can be implemented as different RQD of the same Grid SDR.

It must not be confused with the task drivers (TKD) of layer 1. A TKD can
access different SDR in order to solve its task. For example, when solving a task of
getting an tmage, there are at least two requests to solve : localizing the image, and
retrieving the image. Both requests are solved by a different SDR, the first one uses
the Database SDR, and the second one the Image Retrieval SDR.

Tools

A DSE must be able to perform the internal operations of the low level for
checking security, cache, and localization of data and servers. For reasons of per-
formance and modularity these must be implemented as local independent services
which we call Tools.

Actually, these functionalities involve different layer components :

— File caching : Low level cache functions in order to improve the latency of
accesses. We see this tool as something which can be implemented by using
processes (IIO) of the lower layer (0), which can be accessed and requested by
different processes in the engine, even if there is no transaction functionality
implemented.

6An old format, before becoming DICOM

"We suppose that we can transfer the other images by FTP.

8Gpitfire is the Database Service offered by the DataGrid project.

9Microgrid is a lighweight grid, developed for the Medigrid Project [131], which we have used
for testing.

91

— Request caching : The idea is to have a cache of the answers for previous re-
quests, instead of only having files and images. We consider this as a higher
level problem, so transaction properties are needed. Collaborative cache me-
chanisms [46] [122] require to get provided with distribution facilities, so a such
kind of cache must be designed and implemented at the DSE? level.

— Security : Access control, authorization granting, denial of service, secure trans-
fer, integrity checking, authentication, etc. Most of these functions can be im-
plemented as basic low level services (layer 0), but others (authentication) can
require one to access a server with certificates, so a TOD (layer 1) could also
be useful for managing transactions, while a third layer tool could provide
distribution.

— Data Localization : Functions for distributed data localization, in order to get
interactions between different DSEs. Engines can take advantage of completely
decentralized Peer-to-Peer (P2P) techniques [2| [140] or of semi-hierarchical
tree structures such as LDAP. Tt depends on the implementation, but a tool
for localizing files in other engines is only needed when there is interaction
between engines of the same type, e.g, two DM? engines, as is shown in the
next chapter. This type of localization tool is in the third level, while others,
as the one described above (a TOD, section 4.4.1) aim at localizing only files
in the internals of the engine. For example, an engine can have registered
(metadata) images from many local hospitals (in a geographical region), so it
is able to localize those files by using its internal database service. To localize
the same file from another engine, is quite different. A tool of the distribution
layer will localize the engine which knows where the file is stored, instead of the
file localization itself. In other words, each engine is responsible for localizing
the files in its local space and to offer that service to the other engines.

In summary, a Tool may be composed of tool components of the different layers.
For simplicity, we will refer to a Tool as a layer 2 component having components
of lower layers. Remark : tools as cache and security are being developed by other
groups of our researching team [187] [46] [47] [48] [90] [123] [122] and will not be
studied in this document.

Figures 4.7 and 4.8 show the differences through the 3 middleware
layers. The vertical progress shows aggregation of entities in order to add semantic
significance, for example many Processes are grouped in Drivers, and many Drivers
are grouped in Service Daemons and Service Drivers. The horizontal view in figure
4.8 is a representation of the interaction of elements in each layer.

4.5.2 Schemas

A set of DSE can be organized in hierarchical or decentralized schemas. The
first approach allows one to define fixed connections between DSEs, with an implicit
relationship of dependency. The second, brings independence from a central server :
it refers to P2P techniques. However, a mixed schema is more realistic.

92

DSEO

F1G. 4.7 — Verticals’ view comparative of layers 0, 1 and 2
Aggregation of Processes and Aggregation of Drivers. Multiple Processes are grouped in Drivers,
multiple Drivers are grouped in Service Daemons and Service Drivers.

Figure 4.9 shows examples of these two architectural frameworks, and considers
the permanent availability of computing and storing services in a GRID, which are
interfaced with the engines.

4.6 DSE? : Application Layer

At this layer, a Distributed System Engine (DSE) is defined as a set of Services :
DSE? +» {Services}

A Service is an independent application, with a known interface, and which per-
forms a function for the users; thus, a DM? Service, is one of the services offered by
a DM? Application. We refer to this concept meaning functions of low (data access)
and high level (queries by content, hybrid queries) offered by the DM? Application
to their users.

This layer must offer programming interfaces (API) so that end-user applications
can be built on top of the underlying distributed system.

This layer becomes the core of a specific application, built as a Distributed System
and which has vast requirements of processing and data storing.

The design of the application is based in the concepts of the previous layers, so :
— It is a DS built as a set of interacting DSFEs (engines).

93

- T

— Each Engine is composed of multiple processes which represent Drivers (QUD,
TKD, RQD).

— The application develops Queries, Tasks and Requests (three types of transac-
tions), instead of Drivers. The Drivers are used to execute the transactions
that use lower level API. Those Drivers and APIs are offered by the middle-
ware layers.

— Each engine is named with the application name, e.g., the application DM?2,
which we will describe in the next chapter, is composed of DM? engines.

— Each application engine looks for tools (TOD) internally, for services (SDR)
in the network and for resources in a partner Grid (also a SDR).

— The application also offers services, which in its internals are processed as
queries transactions, and executed into multiple RQD (SDA)

The applications are developed over the functionality, tools and drivers offered
by lower layers (0, 1, 2). However, the developed application must be designed using
the proposed architectural framework (as described above), and being separated
in server and client components. For example, an application as DM? (described
in the next chapter) has a lot of tools and internal services (SDA, SDR), which
are developed by implementing different kinds of transactions (queries, tasks, and
requests), and which run into different types of Drivers (QUD, TKD, RQD, TOD);
but, all this, corresponds to a server implementation, called a DM? engine : this is
the third layer. The next layer, the forth, is the client side of the application, the
one which deals with the user issues.

In other words, a driver manages a special kind of transaction, but the driver and
the transaction are different things; for example, the QUery Drivers (QUD) manage
queries, the TasK Drivers (TKD) manage tasks, and the ReQuest Drivers (RQD)
manage requests. The middleware layers (e.g., DSE’, DSE' and DSE?) implement
those different kinds of drivers (along with the service and daemons drivers), while
the application layer (e.g., DSE®) implements the transactions : queries, tasks and
requests.

4.7 DSE" : User Layer

The forth layer is defined as a set of interfaces to an engine.

DSE* < {Interfaces}

The User Layer is in charge of offering high level access to the services imple-
mented by the application engine. Thus, for our medical application, this layer gives
access to the services offered by the DM? engine.

At this level, transactions become to its highest semantic level (e.g, Hybrid Que-
ries). Users only know about Queries, they do not know details of execution of these
queries, such as distribution, complexity, and magnitude of the resources involved
(computing, storage, network).

This level can be implemented as graphical interfaces (GUI) or as client appli-
cations which use the APIs offered for the precedent layers. In this way, Users can

94

have access to an engine service.

This layer is the client side implementation of an application engine ; for example,
the DM? application offers the API0 and the API3, which are useful for developing
the client side applications for the users.

4.8 Discussion

4.8.1 Extensibility and Scalability

The proposed architecture (DSE) allows one to build distributed systems (DS)
which are highly extensible and scalable, because of its ability to add tools and
services by using its structure of drivers and internal services.

The structure of Drivers allows a DSE to be open and easily extensible (open-
ness). By defining new Query Drivers (QUD), an Engine can offer more complete
services (e.g., different access protocols), by adding new Service Daemons, the En-
gine can offer more different services to its users (e.g., data access, metadata storing,
image query by-content). The definition of new Request Drivers (RQD) also enables
the engine to have access to external services by managing different protocols; the
addition of new Service Drivers (SDR) gives the Engine access to multiple exter-
nal services (Grid, DICOM, database engines). Similarly, the engine enlarges its
internal autonomy by having access to more and different Internal Tools, which are
empowered by adding Tool Drivers (TOD).

The division of transactions into different types (queries, tasks, requests) eases
the decomposition and distribution of complex requests (as an hybrid query) ; espe-
cially, the concept of task and the drivers (TKD) to deal with them, which enables
the development of the distribution layer, by easing transparency and independence.

The structure of multiple processes enables parallelism and concurrency in or-
der to improve performance. Performance can be also improved by having multiple
instances of Drivers.

Resources can be added by adding more concurrent Service Drivers (SDR) that
get access to shared Grid resources. A DSE aims at taking advantage of vast external
resources as those which are offered by a data or computing Grid. Adding more
resources, the system should be able to handle a higher quantity of requests (queries).
Additionally, by dispatching more concurrent instances of the drivers, the engine is
enabled to deal with a larger number of concurrent transactions (scalability).

Software interfaces (APIs) must be specified, documented and available to deve-
lopers. By using those APIs, an external system can access the services offered by
the engine 0.

The middleware layers can be used to build different applications. As an illus-
tration, figure 4.10 shows two different applications, implemented as two different
types of engines : DM? and Cache.

10Two prototype APIs, for layers 0 and 2, have been developed and are presented in chapter 4

95

4.8.2 The DSE architecture VS our Medical Image Manage
Problem

Before beginning this research, we considered the problem of systems for Medical
Image Processing containing vast archives of raw images (as was presented in chapter
2), and we also considered its main constraints. Many of these constraints have a
direct relationship with the classical theory of distributed systems, such as openness,
scalability, security, extensibility, concurrency, and location independence. Others
are closest to ongoing research in grid computing (data-intensive computing and
storing, resource sharing). In addition, other constraints are connected to medical
applications (confidentiality of medical data, queries by content, structured hybrid
queries, restriction of the replication of data (see chapter 2) and the diversity of
image processing algorithms to apply to the medical images.

Because of the complexity of the problem, we decided to define an architecture
that proposes to build a system from its conceptual definition. Rather than starting
with the development of a system, we proposed a concept of DS and then we tested
it with a prototype (presented in the next chapter).

The architecture (Distributed Systems Engines (DSE)) addresses our problems of
structure, extensibility and distribution, as has been shown in the previous section,
but it also addresses our medical concerns :

— Tool Drivers offer the possibility to implement functionalities of security for
medical applications. Thus this concept has allowed us to develop in parallel, an
additional prototype system for security with medical images. Another research
group of our team [187] works on this topic and its product will be integrated
as a Tool. So developed applications can open and close their doors when they
want. These applications can also access external services and resources, while
offering their services to a restricted group of users.

— Medical images are composed of sets of files rather than single files, e.g., a
cardiac 3D MRI image may be composed of 300 files (and more). The Drivers
structure allowed us to increase the performance while processing these images,
by implementing transfers and processing them in parallel. Performance was
also improved by basic Tools (layer 2) such as the Cache Tool (another research
group of our team [187] works on improving cache techniques).

— Large storing capacity will be provided by Data and Computing Grids. Our
architecture considers a Grid as a natural partner, and the structure of Service
Drivers (SDR) and Service Daemons (SDA) allows interfacing with Grids (e.g.,
to store anonymous images) in a transparent way.

— Queries by content over medical images archives are CPU intensive, so the
computing resource becomes critical. The solution, again, is the access to
Computing Grids through Service Drivers. Task Drivers will help in providing
transparency and parallelism in the access to the computing resource.

— This kind of system requires managing metadata about the images. Query
Drivers allowed us to define and access multiple databases.

— The databases of medical images will be used for medical diagnoses and re-
search. For that, the system must be open to process images with different
algorithms, which are registered in the system. Services Daemons (and APIs)

96

are useful to deal with registrations of algorithms and acceptation of hybrid
queries, while Task Drivers, Tool Drivers, Request Drivers and Service Drivers
are useful to deal with the processing of those queries (e.g., a hybrid query
over many images).

Tool Drivers are useful to implement Tools for dealing with basic image pro-
cessing functions, such as conversion of formats, extraction of characteristics,
etc. Such a Tool can be accessed from different processes as a local service.
While designed with a idea of medical large scale application, the DSE frame-
work is generic and can addresses most types of applications.

97

98

I
1o ' IClient Process
I I&‘
86 : : Server Proc
- MPK Iﬁ
1
1 -
Oéﬁ ctwork ¢ ¢ ¢ : 1o
[INO Q Q Q
Vo
Server Machin

r [$3
:ClientAppIicaIiob
_
Server Applicati‘
—_—

(i)
\11 SERVICE DAEMONS (SDA)

{
0 OO0
e

B

TOOLS / /

Securityl 1
- e
Localization ! MPK 1
=1 1

. - =
1

Cach 1

- 1
§! network \1/ \1/ 1

{
SERVICE DRIVERS (SDRO Q Q
Vo

(iii)
F1G. 4.8 — Horizontals’ view comparative of layers 0, 1 and 2
(i and ii) Processes at layer 0 become Drivers at layer 1. Special Processes become Applications.

Machines become Service Machines. (4 and @) QUDs become Daemons, and RQDs become
Service Drivers

(i)

F1G. 4.9 — Distributed System
A DS composed of a set DSEs and Grid services. (i) hierarchical, (ii) peer to peer, (ring)
topology. The Grid participates as a resource provider, and is not, in any case, a router of
transactions. Hierarchical and P2P relationships are represented with continuous lines, while
connections to the Grid are dotted lines.

100

DM2 Cache

DSE2

DSE1

DSEO

F1G. 4.10 — Illustration of two applications using the architecture
(i) DM? Engine. Levels 3th and 4th are the DM? application. (ii) Cache Engine. Levels 3th and
4th are a cache application.

101

Chapitre 5

Implementation

“Data resources are grid-enabled by deploying low-level middleware
systems on them”, Ragkumar Buyya, University of Melbourne, Austra-
lia

102

103

Summary 5

We present a prototype system which is an implementation of the
multi-layered architecture (Distributed Systems Engines - DSE).
With it we have developed a medical application for managing n-dimen-
stonal medical tmages querying and retrieval, and also highly semantic
structured queries (content based and hybrid queries) over them.

First, we address the middleware layers, and then the application
layers of the DSE architecture. Our middleware prototype implementa-
tion is called Distributed Systems Engines Manager - DSEM or
engine, and the application prototype is called the Distributed Medi-
cal Data Manager (DM?). The DSE/DSEM eases the development
by enabling the access to large computing and storing resources in a grid.

The engine (DSEM) is implemented mainly of an API for message
passing (API0), a Message Passing Kernel (MPK), a dispatcher, and a
tool for monitoring. It also has the ability of being connected with several
databases at the same time.

The engine (DSEM) offers internal services such as routing of mes-
sages, and the processing of transactions and files localization, whereas
the Distributed Medical Data Manager (DM?) provides services
such as queries by content, hybrid queries, and querying and retrieval
of sets of medical images.

DM? uses a grid as a computing resource. We have implemented DM?
as a set of basic applications, called Packages. Fach Package imple-
ments a service provided by the medical application.

The DM? is implemented as a set of Packages and the APIS which
delivers remote queries to a DM? Engine. The Packages included with
DM? are : (i) DM? core, (i1) DICOM, (iii) Relational Database, (iv)
Grid, (v) Images tool, and (vi) Cache tool.

104

105

5.1 Sketching Our System

In this chapter we present an implemented prototype of our system. The First
section (5.2) addresses the middleware layers, whereas the second (5.3) studies the
application layers.

First, we have implemented a middleware prototype, called Distributed Sys-
tems Engines Manager (DSEM), which addresses the layers ! 0 to 2 of the DSE
architecture (chapter 4). The prototype offers internal services as routing of mes-
sages, management of transactions, file localization, and others capabilities which
will be described below.

Next, in order to fulfill to the requirements described in chapter 2 and the medical
usecases, we have developed a medical application on top of this middleware. This
medical application is called the Distributed Medical Data Manager (DM?)
and addresses layers 3 and 4 of the architecture. It offers services over a large medical
images data set, as queries by content, hybrid queries, querying and retrieval of sets
of medical images, etc.

The DM? system is designed as a complex system involving multiple grid service
interfaces and several interacting processes geographically distributed over a hete-
rogeneous environment. It is an intermediary (proxy) between the grid and a set
of trusted medical sites, which use the grid as a source of computing resources. To
tackle the DM? complexity, we proposed the multi-layer architecture as outlined in
chapter 4. We also analyze the interfaces between the DM? and underlying grid
services.

Section 5.2 describes DSEM, and section 5.3 describes DM?2. In the next chapter
we will analyze the DSEM performance, and present one application using DM?2.

5.2 The Distributed System Engine Manager
(DSEM)

Our prototype is composed of an Engine and an Application using it. The engine
is an implementation of the middleware layers of the DSE architecture, and is mainly
composed of processes and drivers which interact at the lowest level by exchanging
messages. An API for interfacing the engine is also provided. We describe below
these components.

DSEM ofters the following services :

— routing of messages between processes or entities of a higher level, such as
drivers and internal services

— solution of transactions of three types : queries, tasks and requests

— basic cache functionality

— access to external services, such as grid resources, DICOM servers and database

engines.

— access to internal tools for processing basic functionality over images, such as

assembling of images and conversion of formats.

— multi-database service, for storing metadata

'Our implementation of the layer 2 is still primitive, so future work is planned in this area.

106

— service of files localization in a Distributed System (DS).

5.2.1 API Layer 0

A low level API (referred as APIO in this text) has been developed in order to
offer message passing capabilities (layer 0) to the components of the Engine and also
to independent applications (see section 4.4.2) which connect to the system. Those
applications must be registered 2 into the engine and they have to use the message
passing API0. The APIO offers functions to send and receive messages to and from
a DSE.

A message passing system provides primitives for sending and receiving messages.
These primitives may by either synchronous or asynchronous or both. A synchronous
send will not complete (blocking the sender) until the receiving process has received
the message. This allows the sender to know whether the message was received suc-
cessfully or not. An asynchronous send simply queues the message for transmission
without waiting for it to be received. A synchronous receive primitive will wait until
there is a message to read whereas an asynchronous receive will return immediately,
whether a message is available from the queue or not.

We use IPC mechanisms [88] [89] in the internals of each engine, and network
based communications between different engines or between engines and external
services. Although an IPC communication is a local communication only (share me-
mory based), it has a high speed behavior which is interesting for developing high
performance operations [115] [114] between components that exchange only local
messages; indeed, the engine components interact always in the same computer,
even if they have network interfaces to communicate with other external compo-
nents. Thus, we consider that using PVM/MPI at this level is unnecessarily costly
(heavy) for implementing local communications, even if other implementation can
be developed on them. In the experimentation chapter we present some experiments
showing that our API, TPC based, is as efficient as these tools, or in some cases
better.

The APIO is based on the Inter Process Communications (IPC) mechanisms of
Linux. It hides the complexity of the message passing mechanisms, makes transpa-
rent the IPC calls to the operating system and standardizes the message exchange.

For example 3, two functions for sending and receiving a message asynchronously
into a standard list of arguments (msg_argv and msg_argc) or into a text (buffer),
in a microseconds timeout interval, are the following :

retcode=DSEMclient_ASYNCSnd(mach_from, mach_to,
&op_code, &msg_argc, msg_argv, reqRspFLAG, &my_sec_pid_ID_back);

In this function, a message (argc, argv) is sent from a process (mach from) to
another process (mach to), and it is specified if the sender waits for a response or
not. An important feature of this call function is the assignation of IDs for the target

2To be registered into a DM? engine means that this engine was configured to accept connections
from a specific external application, and performs a greeting process with it before starting-up.
3The whole APIQ is available on Internet ; see the electronic link at section 9.7

107

processes (mach_to) ; this means that somebody (the engine) knows about the valid
processes (the ones which were registered), and can also resolve (the Message Passing
Kernel, below-described) instances of those processes. Thus, this send function allows
one to identify not only a specific process but a group of processes and to deliver the
data to the best target process (the one supposed to be not busy) into this target
group of processes. This group of processes are drivers (below-described), which are
multi-process implemented. In other words, a driver will use this send routine to
deliver a message to another driver which is a multiprocess entity, but, the actual *
target process is solved by the Message Passing Kernel (MPK).
The symetric receive function is quite similar :

retcode=DSEMclient_ASYNCRcv(machine,
&op_code, &msg_argc, msg_argv, DSE_API_TIMEQUT_USEC,
&msg_fm, &snd_response, my_sec_pid_ID);

In this function an operation code (op_ code) is sent to the process (machine)
which is waiting for the message (argc, argv), and it is also informed whether a res-
ponse is expected by the caller or not (snd_response). Similarly, here, the receiving
process is selected by the Message Passing Kernel, if it is part of an entity of a higher
level (a driver).

These libraries allow one to implement additional functions such as cache, secu-
rity, files transfer and encryption, database accesses, image tools, etc, which can be
easily interfaced, and designed as independent modules for easing software develop-
ment.

The main APIO functions are :

— DSEMclient SyncSnd : Sends synchronous messages.

— DSEMclient ASYNCSnd : Sends asynchronous messages.

— DSEMclient report error byQuee : Sends a response error by using the sen-

ding functions.

— DSEMclient SyncRcv : Receives synchronous messages.

— DSEMclient ASYNCRcv : Receives asynchronous messages.

— edit_xml msg : Edits a XML message in order to include useful information
for routing of asynchronous messages.

— DSEM _wait_for N _messages : Waits for a number of response messages,
after broadcasting a message.

— DSEM get my machine number : Gets the internal code for the actual pro-
cess. This code is the one of the entity of higher level for which the process
owns to (the driver).

The whole APIO description is available on the internet; the electronic link is

referenced in the Annexe 9.7.

5.2.2 The Message Passing Kernel (MPK)

The key concept around the level 0 is the collaboration between local processes
using an intermediary which is called the message passing kernel (MPK, defined in

4This is the big difference between an API0 send function and a share memory function of the
operating system in Unix/Linux. However, the API0, in its internals, uses share memory functions.

108

section 4.3.2), and based on inter process communication (IPC) mechanisms. The
MPK is a set of processes in charge of providing the routing of messages from one
process to another process (see figure 5.1). Our implementation of the MPK has
a multi-process design, which allows high performance and minimizes the queue of
messages to be processed.

The figure 5.1, similarly as the one in last chapter (fig 4.2), shows the network
side at top and bottom, but implemented over TCP/IP. The local side (IPC) is
shown at sides left and right (of the figure), and has been implemented by using
the APIO. Processes of different types (see section 4.3.2) are still represented as
circles, and inside the square there is a multi-process implementation of the MPK,
which also has IPC communication capabilities. In our figure, two processes ° of
the MPK are represented by two texts with the MPK legend, and we can also see
that a delivered message to the MPK is processed by the instance with the lowest
load. That is why the arrows are directed to different copies of the MPK ; then, the
messages are forwarded (arrows going out) to other processes.

Input messages

output messages

F1G. 5.1 — The Message Passing Kernel

The MPK uses message queues for receiving and sending messages, and never

5As noted before, multithreads could also be used for implementing the MPK. In this first
prototype we chose develop a multi-process kernel for simplicity reasons.

109

modifies a message. Because higher level entities such as the drivers are multi process
instanced, the MPK deals with tables and criterions for choosing the best target
process (i.e. the one with best possibilities) to rapidly process the message which it
is delivering.

A typical use of the MPK is described in figure 5.2. It shows how processes are
routed by the MPK from a source process to a target process. These messages are
delivered by processes using the communication API0 (synchronous or asynchronous
functions) and they are also received by other processes which use the same APIO;
in between, messages are routed by the MPK. For example, a client process II1O
(part of a QUD) issues a message to a Request Driver RQD (composed of processes
of type IINO), but the message goes through the MPK. In the figure 5.2 there are
defined two processes of the MPK ; this is useful for improving performance because
messages delivered at the same time can be processed simultaneously by different
copies of the MPK 6. Because the RQD are also multi-processes, the MPK chooses
the best RQD process (IINO) to process the message. The incoming messages to the
QUD can be delivered by a client machine, and the RQD can issue messages to a
server machine. In a DM? engine, the same situation occurs when a Service Daemon
(SDA) accepts a query (e.g., to retrieve an image) from an external client machine
(e.g., a grid), and delivers a request to an external service (e.g., a DICOM server
in a hospital), which is managed by a DICOM Request Driver (RQD). The MPK
routes the messages in the internals of the engine, and helps in choosing the best
processes to process to the messages in each one of the entities (QUD, RQD)

5.2.3 Dispatcher

The Dispatcher is a program used to start-up the engine. It reads a set of en-
vironmental variables, which previously were registered in a configuration file and
exported from there.

The configuration file represents the configuration of an engine in each of the
different sites of the D.S. (the engine and its configuration can be different on each
site), and is configured to have only the drivers which are necessary per site 7.

The implemented prototype uses BASH SHELL FEnvironment Variables, so a
source command must be executed in order to export all of these variables. Next, the
dispatcher reads the environment variables in order to get the engine configuration.

A configuration file affects environmental variables (by each driver in the engine),
as shown below :

export machNR_1=1

export machACTIVE_FLAG_1=YES
export machSTART_FLAG_1=YES
export machNAME_1=HOSPITAL_gibbon
export machIN_PORT_1=6901

export machIP_1=195.220.108.25
export machIP_NAME_1i=gibbon

6the number of copies of the MPK is a parameter of the configuration of the engine.
"Some real examples are available in chapter 9

110

QUD MPK RQD

Machine 2
Machine 3

Machine 1 5

F1G. 5.2 — The Message Passing Kernel Implementation
The left column of circles show 2 multi-process QUD, with 8 and n processes, respectively. In the
right column of circles there are 2 multi-process RQD and 1 multi-process TOD. In the center,
there is the MPK with two processes. Messages are routed between processes through the MPK.
Squares on the left side are the client machines, and squares on the right side are the server
machines. Arrows are the messages and their direction inside/outside of the engine.

export machPORT_1=7009
export machTYPE_1=DICOM
export machHOST_1=ANY_ONE
export machUSER_1=ANY_ONE
export machPASSWD_1=ANY_ONE
export machDB_1=ANY_ONE
export machNR_SLAVES_1=10

In section 4.2 we defined a D.S. as a set of engines joined to a set of machines.
The configuration file describes the configuration of each engine, which means that

111

an engine gets from there the data which it uses in order to auto-configurate itself;
however, once configurated, at execution time, what the engine sees are drivers.
That is the reason why we talk about drivers while defining the internal components
of the engine, because these internal components are made of DSE' drivers (QUD,
RQD, TKD, TOD) and services (SDA and SRD). Thus, the configuration file above,

means :

The machine number or ID is 1 and corresponds to a Driver.

The driver is active. An inactive driver is not considered as being part of the
engine.

The dispatcher must start this machine when starting up the engine. If it is not
started, the engine waits for a later greeting procedure of the driver. This is
useful for allowing client applications (4.4.2) to connect locally with an engine,
or for developing internal plug and play tools and services.

The name of the driver is HOSPITAL gibbon. Below it is described that this
driver is a DICOM ReQuest Driver type, so here, this name means that the
instance of this driver manages one hospital in special : the one which has a
host machine named gibbon.

It uses ports 6901 to 6910 for receiving DICOM images. The dispatcher as-
sumes N copies starting in the port 6901. The number of instances is described
below.

The host name to connect with is gibbon.

The port where it tries to connect to is 7009. This means that the DICOM
service is accessible by this port of the host defined below.

Its type is a DICOM ReQuest Driver, which means a RQD of type DICOM,
or getting connection to a DICOM service.

The number of processes to be started is 10.

The mechanism of using a configuration file addresses low level issues such as
the ports or IP addresses, but it also addresses high level issues such as the number
and type of drivers. What is important to notice in this structure is :

Different engines may have different configuration files, and not different soft-
ware development. This means that the system is adaptable to the engines
types; e.g., as we will see later in this document, a DM? server engine is quite
different from a DM? hospital engine, however the software is the same ; what
changes is the associated drivers and services (different configuration files) -
see also chapter 9.

It enables the definition of different instances of the same driver type, e.g., the
defined driver was a RQD for dealing with a DICOM server in one hospital,
but we can define as many DICOM RQD as we want, by associating them with
different DICOM servers (different hospitals).

It enables the possibility of hot configuration, by allowing external plug and
play applications to connect to the engine. This means that a driver or an
external application can be connected to the engine while it is running.

The engine can be configured considering its expected processing charge. This
is possible by configuring the number of processes for each instance of the
drivers, or the MPK.

The figure 5.3 shows a situation where the application engine is configured to

112

have one QUery Driver, two Tool Drivers, three TasK Drivers, and two ReQuest
Drivers.

Configuration File = {

Number of MPK processes

{QuD1}
{TKD1, TKD2, TKD3}

{TOD1, TOD2}
{ RQD1, RQD2}

}

?6
$.
®

F1G. 5.3 — The dispatcher

The configuration file also exports the variable mpkNR in order to define the
number of instances of the message passing kernel (MPK) to be started.

export mpkNR—=2
In this case, we consider that the charge of that engine (in that site) requires two
processes for the MPK, but it may vary from 1 to 10.

5.2.4 Monitoring

The monitoring is a tool provided at the lowest level, which plots the size of a
queue in long periods of time. Its implementation was done as a IIO process (IPC
input only), which is activated from another process.

113

input messages

| tcp/ip|.¢9>_
11O 1 Q D DNI 1O
<! l |
Monitor \ I
| |
I \ M PK 1
| |
I 1
_f! teplip !

250

&:ME FOR EACH QUERY WHEM A RANDOM SOURCE FROM A NORMAL DISTRIBUTION OF

N
o
o

150

100

response time (sec)

a
o

H L | L L L
o 100 200 300 400 500 600 700 800 900 1000
queries

F1G. 5.4 — The monitor
The bottom side of the figure plots the response time in seconds, for each one of the 900 hybrid
queries delivered from a random source (normal distribution) - see section 6.2.5

The figure 5.4 shows a situation where a NIIO process is issuing messages to the
monitor (IIO process) through the MPK. A real case in our implementation is a
QUery Driver which tells the monitor when to start and when to end monitoring.
The data to be plotted is obtained by reading the size of the messages queue and
the queries queue. This is useful in a DM? engine in order to plot the size of the
queries queue when stressing the system for performance evaluation.

It corresponds to a basic tool of data plotting, which interfaces standard libraries
available in the free community as GNUPLOT [188]. This is a good example of how
one can easily integrate this kind of available software, by developing a simple TOol
Driver (TOD) which can be interfaced from the whole engine.

114

5.2.5 Multi Database Structure

DSEM offers the possibility to be connected with several databases at the same
time ; this is an implementation usecase of the concept of ReQuest Drivers described
in the architecture chapter. For example, an application can be implemented having
a TasK Driver for dealing with internal Database Services, however, this TKD can
have access to multiple ReQuest Drivers, each one dealing with a specific Database
Service (a remote Database Manager System - DBMS). Additionally, each one of
these RQD can be multi-instanced. As we will see in the section 5.3.2, this is the
way DM? has connection with Spitfire (a grid database Service) [138] and MYSQL
[196] in different instances (hospitals).

For example, in the configuration file it is possible to include additional environ-
mental variables for dealing with a database service :

export machPORT_30=3306

export machTYPE_30=MYSQL_SRV_RQD

export machHOST_30=gibbon.creatis.insa-lyon.fr
export machUSER_30=hDSEM

export machDB_30=dm2

In this file 8, we have defined a RQD to connect to a MYSQL database which is
running at the gibbon host. As usual in MYSQL, the port to connect is the number
3306. At the connection time, it will identify itself to MYSQL as the user hDSEM,
and opens the database dm2. It is clear that by defining another RQD, it is possible
to access, e.g., the same database (dm2) in another host, or another database (e.g.,
security) in the same host (gibbon).

The possibility of connecting with different databases at the same time eases the
development of a simple model of distribution. It also enables the facility of accessing
different kinds of data, stored in different databases; e.g., a cache tool or a security
tool, would like to have its own data and databases, separated from the applications
ones (DM?), even if they are integrated to an engine, and use the engine for getting
access to a database service (see figure 5.10).

5.3 Distributed Medical Data Manager (DM?)

We have investigated the creation over DSEM of a Distributed Medical Data
Manager unit (abbreviated as DM? later in this document) that interfaces the grid
middleware. It should provide :

— Reliable and scalable storage for images and metadata produced by medical

imagers. This includes connection to the grid file replication mechanism and
a metadata location service granting access to distributed medical records. To
face the reliability issue in a wide area environment, replication of metadata
might be necessary.

— Secure communications, encryption, integrity checking, authentication and a

distributed access control mechanism are needed to secure the data °.

8In this case this part of the configuration file makes reference to the driver with code 30
9This is the subject of another thesis of our research team [187].

115

— Synchronization between the medical image data and their associated meta-
data, due to the fact that they are semantically connected (they should have
the same access control patterns, the same processing requirements, etc).

Our Distributed Medical Data Manager (DM?) is an implementation of layers 3
and 4 of the DSE architecture, that uses the DSEM. To respond to the requirements
and usecases described above (section 2.3) DM? is designed as a complex system
involving multiple grid service interfaces and several interacting processes geogra-
phically distributed over a heterogeneous environment. It is a grid-aware service as
well as an intermediary between the grid and a set of trusted medical sites.

DM? needs to interconnect with existing grid services on the internals of which
we have no control 1°. DM? uses external services but also offers services to external
applications ; with some of them, e.g. a grid, there is a cycle in that service offe-
ring : for example, a grid offers computing and storing services to DM2, and DM?
offers medical data access to grid services. It also offers a service of highly semantic
structured queries (hybrid queries) over medical images for the medical community.

We will refer to DM? engines to designate the set of DM? services that we
developed in order to avoid confusion with external services. A DM? service is offered
by a DM? engine. Each engine is composed of a set of independent drivers which
interact by exchanging messages. We designed each DM? Engine through the layered
DSE architecture, described above.

DM? offers these services :

— Queries by content, which allow one to query medical images by looking for
special characteristics inside the image itself. In order to resolve these queries,
image processing algorithms must been applied.

— Hybrid queries, allow one to query the medical images not only by their
content, but also by considering their associated metadata.

— Querying and retrieving sets of DICOM and NON-DICOM medical images,
e.g., temporal 3D MRI.

— Metadata management service, for : - Storing and registering new images (re-
sult images from experiments). - Managing additional metadata over existing
images - Tracking images, for identifying the result images processed from the
master images.

— Application of a list of image processing algorithms to an image.

This includes the Registration of image processing algorithms in the medical
system, and also the registration of lists of algorithms to apply to an image at
the capture time. These are issues which must yet be developed. Although the
functionality of applying the algorithms or a list of them already exists, their
registration as a user service is to be developed.

A grid storage interface recognizes files and image processing algorithms which
manipulate 3D image files. Therefore, when sets of DICOM slices are registered into
an hospital DICOM server, the structure of this data set is interpreted and one
or several file IDs are associated to the image files. From the grid point of view,
these files will therefore be published and accessible to any grid service through the
storage interface. However, the physical image files are not assembled until requested
through the storage interface. On demand, the requested image file is assembled in

19Indeed these services are not developed by us.

116

a scratch space . It is then returned to the querier. The image can be replicated
to any classical Mass Storage System (MSS) or downloaded to a worker node '? for
computation. For efficiency, assembled files are cached in the scratch space for future
use. The DM? Engine is the interface between the grid and the DICOM servers, or
even better, DM? offers transparent access to data stored in these servers.

DM? also extracts metadata (see figure 5.5) from all DICOM files registered in the
DICOM server and stores them in a SQL database to ease the query on metadata. A
link between each image, the composing DICOM slices, and the associated metadata
are stored in the same database. The metadata structure is designed to be extensible :
the user can associate (see section 6.3) any complementary metadata (needed for
a medical application) to the image. DM? also permits (see also section 6.3) the
registration of metadata associated to data files. Indeed, medical metadata are the
most critical part of the data as it may contain private and identifying patient
information. This process will be clarified in sections 5.3.1, 5.3.2, and 6.3.

DM? is able to register and provide a grid interface to data coming from several
distributed DICOM servers. As discuted above, it plays a key role in interfacing
DICOM servers with the grid (figure 5.5).

/H% | DM?2 | Grid Middleware
~ 1 Encryption - Replica
| |
| Header | Manager
DICOM ' blanking | SE interface || SE interface
Server - !
| | Job
! lSubmission |~V
\ : : Service
| l
| |
| |
| |
| |
| |
|

Grid
M etadata manager MSS
LFN [paramg] [parn] -
. - - - - - - _————_ v

Imagers

F1G. 5.5 — The DM? interface between the medical imagers and the grid

The DM? prototype is written as a set of transactions (queries, tasks, requests)
and drivers which are separated in different blocks of code called Packages. An API
(layer 3th or API3) for delivering remote queries to a DM? engine is also provided
(described below). In section 5.3.1 we describe the most important DM? Queries,
in section 5.3.2 we describe the structure of the code (as packages), and in section
5.3.3 we present the API3.

1By querying the DICOM server for the set of DICOM slices composing the image and extracting
the image content from these files.
12A node in a grid.

117

5.3.1 DM? Queries

We consider as the principal queries those which implement the services of DM?
13 They are :
— DSEM _dm2 getlmage qu : Retrieves all the slices (files of an image) from
its storage server, and assemble them in a single file.
— Registers and deletes an image into/from the DM? system, which implies to
do it also into/from the grid. - DSEM dm2 reglmage qu
- DSEM_dm2_dellmage qu

— Basic SQL queries for manipulating metadata- DSEM _jEspy insert2Table qu
- DSEM _jEspy_deleteFromTable qu
- DSEM _jEspy_update2Table qu
- DSEM _jEspy_selectFromTable qu

— DSEM dm2 inqUsingAlgorithm qu : Applies an existing algorithm to an
image, and sends the answer to the user. This query is the base for implemen-
ting queries by content and hybrid queries.

A Query by content is implemented as the application of a specific list of algo-
rithms to an image, so the Query DSEM _dm?2_inqUsingAlgorithm__ qu becomes of
general purpose and usefulness.

For example, consider the code below :

//allocate the struct
1. inqUsingAlgorithm_msgPtr msglnqUsingAlgorithm = NULL;
2. msgInqUsingAlgorithm = (inqUsingAlgorithm_msgPtr)
malloc(sizeof (inqUsingAlgorithm_msg));

3. retcode=parse_inqUsingAlgorithm_xml (msgInqUsingAlgorithm) ;

4. if ((library_error=inqUsingAlgorithm_qu(msgInqUsingAlgorithm,
&setofResultsGET))==N0){
hD_trace("%s going to process a LIST OF ALGORITHMS \n");
Yelse{
hD_logerror("%s error processing a DM2 service or a
grid service\n");

}

At line 3 a XML %6 [189] message (coming from a remote client machine) is parsed
in order to fulfill the msglnqUsingAlgorithm structure with the set of algorithms

I3There are also queries which implement low level functions, but they are not described in this
document (see 9.7); e.g., queries for manipulating files instead of images. Similarly we will not
describe tasks and requests, because we consider this information as part of a technical document.
The suffix qu makes reference to the implementation of queries

118

which are going to be applied to an image (its code is also in the structure). The
line 4 applies these algorithms to the image.

At the moment, our implementation applies a serial list of algorithms to one
image (figure 5.6-ii) ; the figure 5.6-i illustrates a concurrent and synchronized ap-
plication of the algorithms, but this is work to be done in the future.

(i) concurrent (i) serial

dat

&

~

)

®
- @®-0-@—

|
=

|

F1G. 5.6 — Application of a list of algorithms to an image
(i) Concurrent Application, (i) Application in serial

/@
—(©®

A Hybrid Query can be implemented as the combination of a Metadata Query
and the application of an algorithm (or a list of algorithms) to the image. The section
5.3.3 illustrates this possibility.

Illustration of DM? internal interaction

Starting from the detailed usecase described in section 2.3, we sketch the use of
the principal DM? queries (see figures 5.7 and 5.8).

26We use XML because it eases the transmission and sharing of data. It encloses or encapsulates
information in order to pass it between different computing systems. The wide use of XML eases
implementation, and interoperability.

We have also considered that grid middleware, such as the DataGrid one, uses XML for interfa-
cing other systems.

119

First, the cardiologist enters a query (e.g. to find the MRI recently acquired for
a patient in this hospital) through a DM? user interface. The user’s authorization
to access to the data is checked by the security TOD (step 1 of figure 5.7-i). The
DM? engine sends the request (by using the API3 described below) to the metadata
interface through the metadata RQD and TKD. Then, the patient file logical iden-
tifier and its associated parameters (imaging modality, region of interest, dynamic
sequence, MR acquisition parameters, etc) are returned to the user interface.

Now, the cardiologist enters a request to find all images (see step 3 of figure 5.7-ii)
comparable to the image of interest (same body region, same acquisition modality,
etc) and for which a medical diagnosis is known. The DM? layer 2 should be used
here to distribute the requests to all hospitals with metadata services. In the current
implementation one single metadata service is queried through the metadata RQD
and TKD again. The logical identifier of all images matching the patient source file
parameters are returned.

A request is then made for the computation of similarity measures [28, 27| bet-
ween the patient image and each image resulting from the query (see step 4 of
figure 5.7-ii). The job submission service of the grid middleware is used to distribute
computations over available working nodes. For each job started, the grid replica
manager triggers a replication of the input files to process onto the grid computa-
tion nodes. If the requested files are not registered into the grid (as a replica), they
are requested by the grid to the DM? engine. The DM? engine asks the DICOM
server, which assembles MR images on the fly into its scratch space and returns
images to grid nodes.

Figure 5.8 details the operation; on top, the grid middleware triggers a DM?
query for getting an image : (1) It first asks for the image to the cache TOD. (2) If
that image is not available it then accesses the database (metadata TKD) to locate
the DICOM files from which the image must be assembled. (3) The cache TOD is
requested again in order to improve the DICOM file latency access (look for files
instead of images). (4) Assuming the cache does not contain the requested file, it
should be copied from the DICOM server. The DM? engine requests the DICOM
server through the DICOM RQ@D and retrieves in parallel a set of DICOM slices
that are assembled into the scratch space to produce the 3D image requested. (5)
The DICOM files are assembled into a 3D image using an image TOD. (6) Finally,
the image is stored into the cache and returned to the grid - See step 2 in figure 5.7-i.

5.3.2 Packages

We have written DM? as a set of basic applications, called Packages (PCK).
Those PCK correspond to all the necessary code for implementing a tool or an
internal service, as well as offering access to external services.

These Packages are developed over the implementation of the middleware layers
(DSEM), and also consider the defined architecture (DSE). For this reason, a Pa-
ckage is written as a set of Drivers and Transactions (see section 4.4 in chapter 4).
As drivers, we wrote QUD, TKD, RQD and TOD, which represent Tools, SDA, and
SDR. As transactions, we wrote Queries, Tasks and Requests.

As an example, for accessing a database external service and also offering a

120

service (to the DM? users) of querying and modifying the database metadata, we
wrote a QUD and a set of transactions (queries, tasks and requests), as well as one
TKD, and two RQD (for accessing two different kinds of databases) - see figure 5.10.
This code is grouped and named as Database Package and is described below (5.3.2).

The section 5.3.2 describe all the Packages that we have written ; however, there
exists a more general PCK, which has a relationship with all the others and is called
the The DM? Core Package (described in section 5.3.2).

The DM? Core Package

The main Package is the DM? Core Package. It develops the access to a DM?
engine and the assignation of tasks and requests to the drivers. For this reason, its
code is composed specially of QUery Drivers (QUD) and Queries.

These include :

— A QUery Driver (QUD) for giving access to other DM? engines

— A QUery Driver (QUD) for giving access to external machines such as grids or

clients using the API3 (section 5.3.3) , e.g., external machines or applications
delivering DM? messages.

— The set of queries which represent the offered DM? services, such as hybrid

queries, queries by content, queries to metadata, and access to images.

Each one of the queries is a set of tasks and requests (see chapter 4). In order
to resolve each one of these queries, different internal drivers must be accessed,
depending of the requested service. For example, querying an image means doing
interactions with drivers of the database service, but also with drivers of the file
retrieval service (DICOM). Thus, such a query can be implemented as two tasks :
localizing the image, and retrieving the image. Because those tasks are implemented
in two different packages (database PCK and DICOM PCK), a query such this one,
which uses tasks from different packages, is written in the DM? Core Package.

Our implementation includes with the DM? Core Package those queries which
interact with different services (e.g., querying an image above) . The others are
included in the implementation of each Package; e.g., query of metadata does only
needs to interact in the internals of the packages, so this query is included there.

The figures 5.9 and 5.12b represent Packages (PCK) Schemas ?°, which describe
what is included with the DM? Core Package (written source code). For example,
figure 5.9 shows that the DM? Package has two QUery Drivers (QUD) and some
Queries. Figure 5.12b shows that the same two QUery Drivers (QUD) of DM? also
deal with queries to execute in a DM? Hospital Package as described below in section
5.3.2.

25Package Schema : Similarly to the other figures, the square represents the DM? engine, and
circles the drivers; but in this figure they are dotted in order to call the attention in the fact
that they represent a different type of schema. The internal polygons represents what is included
as written code for this Package (PCK). If its surface covers the circles, this means that some
drivers of that type are included, if a directed triangle is designed, this means that transactions of
that type were also included with the source code of the Packages (PCK).

121

DICOM Package

The dm2DICOM Package was developed for dealing with DICOMS3 servers. In fi-
gure 5.11c the surface ?° representing the DICOM Package shows that it is composed
of :

— A TasK Driver TKD which provides transparent and concurrent access to a

internal DICOM service (SDR)

— A ReQuest Driver which implements session establishment and operations with

a DICOM3 server (usually CTN or DCMTK).

DM? uses this Package for doing pull actions of DICOM images from a Hospital.
Each instance of the RQD is connected to a DICOM Server (CTN) which represents
a hospital, and each one of these instances is started as a multi-process driver, which
allows the parallel transfer of DICOM files from each hospital. In this way, a DM?
engine can manage multiple hospitals by starting multiple instances of the DICOM
RQD.

The RQD implements the Query Retrieve Service Class (QRSC) defined in the
DICOMS3 standard [49], by using the DICOM Tool Kit (DCMTK) [136].

Database Package

The dm2DB Package was developed for dealing with the Database Service. In
figure 5.11b the surface 2° representing the Database Package shows that it is com-
posed of :

— A TasK Driver TKD which provides transparent and concurrent access to a

internal Database Service (SDR)

— A ReQuest Driver which implements session establishment and operations with

a MYSQL Database Management System (DBMS).
— A ReQuest Driver which implements session establishment and operations with
a Spitfire Server .

— Basic Queries for doing SQL operations (select, insert, update, delete) over the

metadata database in the server engine side.

At the moment our prototype is working with the MYSQL RQD. The Spitfire
RQD was also tested but there were problems of stability with the C++ API which
was provided by the DataGrid Work Package 2 team. Some work must be done in
order to adapt it for LGC2 (EGEE).

The TKD enables the queries to access transparently and concurrently different
databases, or also the same database with different SQL operations. The same TKD
is valuable for the two RQDs, which means that development of the TKD is not
dependent on the implementation details of the MYSQL RQD or Spitfire RQD.

The joined action of the TKD and RQD enables the implementation of a Mult:
Database Structure. DM? uses DSEM as middleware, so it has the possibility to
be connected with several databases at the same time; e.g., a DM? server can have
simultaneous access to its central database and to remote DM? client databases (hos-
pitals). For example, a DM? server managing N clients (hospitals) can be configured
to be connected at the same time to its central database and to N DM? client data-

14DataGrid middleware for accessing SQL Database Management Systems (DBMS)

122

bases (hospitals) . This means to be connected simultaneously to N + 1 databases
- see figure 5.10. Additionally, it is possible to configure additional databases for
managing security or cache issues. This will be useful when the security and cache
systems have been integrated with DM?.

The definition of the server and client databases for DM? are described in annexes
9.5 and 9.6.

Grid Package

The dm2Grid Package was developed for dealing with the Grid Services of re-
sources sharing (storing and computing).

In figure 5.11a the surface ?° representing the Grid Package shows that it is
composed of :

— A TasK Driver TKD which provides transparent and concurrent access to a

internal Grid Service (SDR)

— A ReQuest Driver which implements session establishment and grid operations

with the MicroGrid software [131].

— A ReQuest Driver which simulates session establishment and grid operations

with the DataGrid middleware.

The Grid TKD can access each one of the RQDs (DataGrid or MicroGrid), but
only one can be configured and started at a time. In section 5.3.2 we will see that the
DataGrid RQD is only a simulated interface, so the operational one is the MicroGrid
RQD.

The TKD also offers the possibility of managing the parallelism of tasks with the
Grid Service, and transparency ; e.g., in order to integrate another (external) Grid
Service, only a new RQD must be developed (not the TKD).

DataGrid RQD

A grid middleware, such as the EDG (European Data Grid) middleware [126],
proposes a standard storage interface to the underlying Mass Storage Systems (MSS).
Through this interface, the middleware can access files located on distributed and
heterogeneous storage pools. Grid-enabled files are handled by a Replica Manager
(RM) : to ensure fault tolerance and to provide a high data accessibility service,
files are registered into the RM and may be replicated by the middleware in seve-
ral identical instances. The first file registered into the RM is a master file. Other
instances are replicas. When a file is needed, the grid middleware will automatically
choose which replica should be used for optimizing performances. Having multiple
instances of a file also increases its availability since connection errors are likely to
happen in a wide scale distributed system. To solve coherency problems, replicas are
accessible in read only mode and modifying a master file invalidates all its replicas.
To ease files manipulation, grid wide Logical File Names (LFN) are used to identify
each logical data (i.e. a master and all its replicas).

For each new DICOM image or set of DICOM images (depending on the semantic
of the DICOM series) produced by an imager, a LFN is created and registered into
the RM. The DICOM files thus become, from the grid side, a master file. There
is not necessarily a physical file instance behind this LEN but rather a virtual file

123

made up of a set of DICOM files, that can be reconstructed on the fly by DM? if a
request for this LEFN comes in. For efficiency reasons, assembled files are cached in
a scratch space before being sent outside. DM? also stores metadata and establishes
a link between an LFN and its patient- or image-related metadata.

The DM? storage interface ensures data security by anonymizing on the fly images
that are sent to the grid. Replicas of a medical image may exist on any grid storage
node, given that encryption forbids data access without decryption keys. These keys
are stored with the patient-related metadata on trusted sites only [48]. In order to
ensure data integrity, the grid storage interface does not allow the master files stored
on the DICOM server to be deleted.

The grid enables the DICOM server with a storage interface that makes it visible
as any MSS. However, DM? acts as a read-only Mass Storage System as it does not
allow external grid data to be stored on the sites it controls : new medical images
are registered internally when produced on the medical imagers and DICOM servers
are not intended to store any other kind of data.

These functionalities were implemented as a DataGrid ReQuest Driver (RQD)
for issuing messages to the DataGrid, and as a QUery Driver (QUD) for accepting
queries from the DataGrid. The messages interface as was defined with the DataGrid
Work Package 5 team is shown in the chapter 9. It was tested in simulation mode
but, unfortunately, the Biomedical Applications (Work Package 10 - WP10) were
not of the highest priority for the DataGrid project and an integration with the
DataGrid middleware was not possible. At the moment, the DataGrid project [126]
was replaced by the EGEE project [143] and the new middleware (LGC2) does not
consider the work of the Work Package 5 team. Therefore, additional work must be
done in order to integrate DM? with LGC2.

MicroGrid RQD

The MicroGrid software [131] is a light-weight grid development intending to
provide basic grid functionalities for users through an API and a command line
interface.

It provides multiple computation and storage resources management and can be
easily installed on a cluster in order to prototype a real grid environment.

We implemented a RQD using the C++ API in order to establish a session with
a MicroGrid, enabling access to file registration and job submission services. The
DM? engine uses it for registering images and submitting algorithm computations
on the images.

The power and versatility of the architecture enables DM? to use different grids
as a source of computing resources. The Grid TKD can deliver requests to a in-
ternal Grid Service, without worrying about the specific implementation of Grid :
DataGrid, MicroGrid, or LGC2, in the future.

Hospital Client Package

The figure 5.12a shows the Package for a DM? Client Engine at a Hospital. This
Package is composed 2 of :
— A QUery Driver for synchronously accessing a DM? Server Engine

124

— A QUery Driver for asynchronously accessing a DM? Server Engine

— A set of Queries for registering and deleting sequences of images and slices
(DICOM and NON-DICOM).

— A command line utility for testing the queries.

A hospital can be configured to use a synchronous or an asynchronous RQD. The
function of these RQD is to have communication with a DM? Server Engine in order
to register the images into the system, and to transfer the associated metadata for
each image.

Each hospital manages different Magnetic Resonance Image (MRI) devices for
image capture (see section 6.3.2); thus, the DM? Client Engine must deal with
different and concurrent scanners as well as with multiple sequences of images in
order to register them into the system. Each image can be made up of one or several
DICOM files representing portions of the imaged body. The underlined problems
are :

— to intercept the capture event !5 (of the image) and to process this event into
the DM? system, which means to start the necessary processes at the DM?
Client and Server Engines.

— to extract its useful metadata and to build relationships of a high level between
the set of DICOM files of an image ID. This allows one to identify, e.g., a
temporal sequence of slices (of a 3D image) under a single image identifier
(ID).

— to update the database in the DM? Server Engine.

— to compute special characteristics of the image (image processing) and to re-
gister it as special metadata.

The Hospital Client Package provides the software components to analyze the
sequences of images in order to determine when a sequence finishes or another one
starts. This allows one to decompose the sequences of images in all its associated
slices, and to register these relationships into the database. It also provides the
queries for starting the computation (in an external computing resource, as a grid)
of characteristics in the image.

This PCK includes also the necessary components for intercepting the capture
event as described in section 6.3.2 in chapter 6.

Tool Drivers Packages

We have developed two TOol Drivers (TOD), one for assuring basic cache ope-
rations, and another for dealing with images operations -see figure 5.13. Another
group of our team [187] also implemented a prototype of a security TOD. The figure
5.14 shows the integration of the TOol Drivers which are being developed by our
research team [187] as independent projects.

5By capture event we refer to the action of pushing a DICOM image into the DICOM Server,
after it is scanned. As shown in section 6.3, these images go into a server as CTN or a PACS
system, not to a DM2.

125

Cache Package

The system performance is sensitive to the quality of the link to hospitals where
the DICOM files are stored. Our team researches in order to develop cache techniques
which could be useful for the DM? system, in order to improve the latency of image
access.

We have one vision of such a cache system as a TOol Driver (TOD), but its
final integration with DSEM/DM? is yet to be done in the future ; however, we have
implemented all of the interfaces with a basic cache which at the moment can be
used as a TOD. The integration of the new cache system, will only require to replace
the TOol Driver.

That vision proposes several levels of cache in order to improve the latency of
accesses :

— First, there is a request caching layer. The goal is to cache requests and results
in order to have a high probability of finding precomputed responses [46] to
incoming queries to the system.

— Second, the complete image is expected to be residing in the cache area (image
caching layer).

— If not, the file caching layer works in order to find some DICOM files (image
slices) in the cache area.

— Finally, having no other option, DICOM files are transfered in parallel from
the hospital, then registered into the cache. The image is assembled and also
registered into the cache.

The cache must assure these functionalities :

— cache responses instead of only files and data 6.

cache set of files (images and sequences of images).
check the existence of files in cache.

— register files in the cache.

The cache package which is integrated is only composed of a TOol Driver, as it
is a basic cache only.

Images Package

When a sequence of images is required, DM? goes to the hospital where the image
is stored, and makes a DICOM pull of the images to the DM? server. This sequence
of images is stored as a set of DICOM files in the hospital, so the set of DICOM files
is transferred to the DM? server. We have developed a TOol Driver for assembling
on the fly these files (images) into an unique file '7 before sending it to the grid or
Client.

Additional functionality, such as format conversion or header manipulations of
DICOM images can be implemented here.

The images package is composed of a single TOol Driver.

16This functionality is not implemented, but it will be included in the future cache
"Multiple formats are supported : JPG, GIF, INR.

126

Security TOD

Data management and replication mechanisms [7] proposed by grid middlewares
mainly deal with flat files. Data access control is handled at a file level. In the Data-
Grid (and EGEE) project for instance, user authentication relies on the asymmetric
key-based Globus Grid Security Infrastructure layer (GSI) [42]. This infrastructure
does not take into consideration metadata and can not address patient record dis-
tribution.

Preserving patients privacy is a major concern for medical data processing sys-
tems. The distribution of data over a grid makes data control much more difficult
than on closed systems. Data on grids may be replicated but all storage sites are
not accredited to receive medical data. Therefore, their administrators should not
have read access to the data content. Some identifying metadata are not accessible
to non accredited users as well. Achieving a high security level is mandatory but
security is always a trade off between inconvenience for the users and the desired
level of protection. In order to convince users (physicians and later patients) to use
grids for their data storage and processing needs, many functionalities need to be
provided such as :

— Reliable authentication of users.

— Secure transfer of data from one grid element to another.

— Secure storage of data on a grid element.

— Access control for resources such as data, storage space or computing power.

— Anonymization of medical records to make them available for research.

— Tamper-proof logging of operations performed on medical files.

— Robustness against denial-of-service attacks

— Traceability

The features that should protect data [91] while it is being processed on a grid,
are access control and anonymization. Users need to trust the servers on which their
data are going to be processed. To our knowledge no systems exist for data processing
on untrusted resources.

Our team [187] is doing research in addressing all these requirements. A TOol
Driver prototype was developed and tested with DM?, however, it is not detailed
here because it is part of another thesis. That TOD uses the APIO in order to
get connection with DM?, and once finished it will address : (i) authentication, (ii)
secure transfer, (iii) secure storage of data, (iv) authorization and access control, (v)
anonymization, (vi) traceability.

The security is not a package, because its code is not integrated with DM?, but
the system which is being developed can be integrated as a TOD of the DSEM
system.

5.3.3 API Layer 3

This API (called API3) delivers queries to a DM? server engine. Using it, an
application can be coded to became a DM? client. Usually, on top of this API3 there
is a command line program or a GUI.

The API3 delivers remote XML 26 [189] messages to a DM?, and it allows these
operations or queries :

127

— registers a slice or a sequence of DICOM images.

— registers a slice or a sequence of NON DICOM images.

— deletes a slice or a sequence of images.

— SQL queries (select, delete, update, insert) over a DM? table.
— pushes an image or slice to DM?.

— pulls an image or slice from DM?2,

— moves an image to the grid.

— applies a list of algorithms to an image.

— associates text and image files to an existing image.

Some code at layer 3

A very simple C program to do the above process, can be written as follows # :

strcpy(requestToDM2, "WHERE patientID="MR X" AND date="31May2005"");

ingdm2image (&RequesttoDM2, &Imageslistforpatient);

strcpy(DM2imageid, Selectimagefrom(Imageslistforpatient));

DSEMapi_3_dm2_inqUsingAlgorithm_qucl (DM2imageid, &Algoparametersforimage);

DSEMapi_3_dm2_inqUsingAlgorithm_qucl (DM2imageid, &ComparablerequesttoDM2,
&Algoparametersforimage, &Comparableimageslist);

6 DSEMapi_3_dm2_inqUsingAlgorithm_qucl (DM2imageid, &Algoparametersforimage,

&Comparableimageslist, &Similarimageslist);
7 for (Img=0; Img<N; Img++){
Myprocess(Similarimageslist[Img]);

a > WD

o0

9 }

For simplicity of reading, we do not include variable definitions. At line 1 and 2
we build a query which is delivered to the DM? system in order to get a list of images
for the patient “Mr X” which were acquired on a specific day. One of these images is
selected (line 3) considering a user’s defined criterion (the function Selectimagefrom),
parameters of interest for a similarity algorithm are computed (line 4), and then an
image database is queried (lines 5 and 6) to obtain similarity measures from the
selected image. A list of similar images is returned (line 6) and the user starts his
process (lines 7 to 9) to do the image processing tasks.

The whole API3’s description is available on the Internet ; the electronic link is
referenced in the Annexe 9.7.

18This code is different from the one presented in section 6.3. In that, this is a use of the API3
(client side) functions, whereas in section 6.3 we use commands which call these API3 functions.
Similarly, this is different from the code presented in section 5.3.1, which corresponds to the queries
on the server side

128

129

GRID DM2 API

b

| Q tep/ip g
I DM2 QUD I
I //(‘ ‘\
1 .
O=1" 4 '
| K DN I
Security TOD ' AN
I /I 2 R < I
/ RS
. 1
] S
cachetop 1 Al
1 ! -
- i
I I Metadata TKD
(&) .
& teplip
C\-LDMetadata RQD
Metadata
(i)
DM2 API
| tep/ip g
I DM2 QUD I
i
i
i
I GRID TKD
i
I S - ,v"@ O
I TS / I Metadata TKD
2 tcplip a--"" 4
DM2 RQDC\L> GRID RQ%I) C\]I)Metadata RQD
another DM 2 GRID Metadata
(ii)

F1G. 5.7 — DSE? usage example : a hybrid query .
(1) 1-Security check 2- Cache query for stored results, (ii) 3- A distributed request is issued to find

all images comparable to the image of interest, 4- similarity measure process is issued to the grid.
See sectladt) 5.3.3)

1€T1

* (eouregsur 10§ oSt

g rerodurdy e Sursodwiod OIS (Ig JO 198 B) 19AIS NODI PY? WoIf ofewl [edIpotl B SUIASLINY

o[durexs] a8es — 8'¢ "OI

GRID DM2 API
| teplip8
DM2 QUD
I p ‘{__9 ________ 3 I
TP Be
, ~o T v
Image TOD 1) 0 N .5 DICOM TKD
Q <— 2 PR,
I // ////\’\\/// \LIeO
1/ 3 - v
/ - s ~ 7
, S - .- o I GRID TKD
cacheton 17 7 e g \I
Oél‘/ O
/ / Metadata TKD
8_ tcplip A

DICOM RQ@ GRID RQQ\L) %data RQD

DICOM GRID M etadata

I— —_—— — .= .— - - = ‘—‘ —_—. - 1— - - —I |
! LT Grid
I magetool > > RCU
° I ----- :
] G S | Database
............ ; e '
| o | bicom .
- =— [Ty | <=
-~ Cache HPNRE "
| R N i, i, 1
= I
| |
} ' ' '

.
.,

of . o

*eecas® cene

EDG ugrid Spitfire MYSQL

Fic. 5.9 — DM? Core Package

132

DICOM3

Hospital Application

V v

I P 195.220.108.25

1
1
1
MPK
:/ MPK 1
1
1
1

MYSQL MYSQL YSQL fivsoL

D
IP 127.0.0.1

2=
SHille

P 194.167.219.40

Fia. 5.10 — Multi database structure

133

DM2

e i - - e — = ==

SEDG ugrid | | spitfire

MYSQL

(@)

(b)

(©)

1!
DICOM3

F1G. 5.11 — Packages (PCK)
(a) Grid PCK, (b) Database PCK, (c) DICOM PCK

(b)

T

............

""""" . I Hospital @
B N I
|

— =t = =, = =] -

asyc

F1G. 5.12 — Package - Hospital
(a) Hospital Client Package, (b) The DM? Core Package covers the Hospital

134

T

©) . Cache e Ie{ '

(b) AP Py |

SEDG ugrid Spitfire MYSQL DICOM3

Fi1G. 5.13 — Tool Drivers
(a) a basic Cache TOD, (b) image TOD

[. ' . N
. . .

@ L=

(b) : _.: e |

EDG ugrid Spitfire MYSQL DICOM3

F1G. 5.14 — Tool Drivers Integration
(a) the cache TOD which is being developed, (b) the security TOD which is being developed

135

Chapitre 6

Experimentations

“The key is to offer, select and aggregate resources based on individual
requirements.”, Rajkumar Buyya, University of Melbourne, Australia

“Users are not concerned with where the data is located as long as
they have access to the data”, Carl Kesselman, University of Southern
California, USA

136

137

Summary 6

In the first part of this chapter we describe tests of performance of a
DM? engine, and in the second part a medical application is presented.

At first, we present some experiments designed for analyzing the be-
havior of a DM? engine. We decompose the response time of a query
into its main phases, and we recognise the importance of the DICOM
phase (access to data). Thus, we do additional experiments to see the
behavior of the system in stressing conditions when performing the data
access.

We test the system working when it rises its data access capacity,
which means when its data access resources become saturated, and also
when these are over saturared. We also analyze the system when queries
are issued by random intervals of time.

Additionally, we check by experiments to analyze the performance of
the message passing layer.

Results shown that the performance of our prototype (DSEM°), for
making operations of message passing, is better that PVM. The prototype
is also stressed for solving up to 800 DICOM file transfers (pulls) in
parallel, and up to 10000 queries arriving with a random pattern of time.
All cases shown that the system can deal with the efficient evacuation
of the work.

Then, we present a medical application which uses the DM? system,
and which we test as a prototype implementation. This application is
presented from the user point of view. We place the emphasis on the 4th
DSE layer (user).

We summarize the whole DM? system, and also present the mecha-
nisms of image capture, as they are implemented in the Cardiological
Hospital of Lyon. This particular implementation uses a DM? Client
Engine and two DICOM Servers : CTN and DCMTK.

Finally, we present two medical usecases : Stmilarity and Segmenta-
tion of Cardiac Volumes. These usecases correspond to the application of
dedicated 1mage processing algorithms, to medical sequence images. The
users deliver queries to a DM? Server Engine, and those are resolved
by querying metadata, accessing the images, and using Grid computing
resources. These queries correspond to hybrid queries and queries by
content, and they are very time consuming.

138

139

The emergence of data-intensive medical applications, require high performance
transport and replication of very large data sets among multiple geographically dis-
tributed sites. For the overall performance of grid applications, the data access time
is as much of a critical component as the computational speed.

A set of DM? engines interacting and working together are a kind of virtual
machine that unifies data sources (hospitals) with computing and storing resources
(Grid). This unification aims at providing more and better services ' than available
in a single DM? engine server; thus, the quality of service is related to speed and
availability.

The availability of some DM? services (hybrid queries) depends mainly of the
availability of its computing resources (Grid) and storage resources (Grid and Hos-
pitals) ; however, its speed, or data access performance, is mainly controlled in the
DM? engine by using concurrency. Thus, we have designed some experiments to mea-
sure the performance of an engine in terms of data access time. These experiments
are presented in the first part of this chapter (section 6.2).

In the lowest level, everything relies on the message passing paradigm, therefore
we began by testing the performance of that layer (DSEM?) in section 6.2.1. Data
access is the most time-consuming ? phase in the solution of a hybrid query, so we
have designed four experiments to measure the performance of a DM? engine when
retrieving an image (set of slices) from its DICOM storage source (hospital) over
stressing conditions.

The first experiment analyzes the behavior of such a query, decomposed of phases
(section 6.2.2). The second experiment brings the system to its maximal capability
(section 6.2.3), the third goes over that thereshold (section 6.2.4), and the last shows
a more realistic situation (section 6.2.5) by implementing a random arrival of those
queries. Experiments two and three deal with queries arriving in parallel in order to
produce bottleneck situations.

In the second part of the chapter (section 6.3), we present a medical application
from the user point of view. We define an environment with a DM? server engine
and eight hospitals (section 6.1), and then we test it by delivering concurrent queries
for accessing and retrieving data. We use the query (getDM2Image) which localizes,
retrieves, assembles and finally copies an image to the Grid.

6.1 Test Environment

We have configured (see section 9.4 in chapter 9 for experimental conditions) a
DM? Server Engine with eight attached hospitals (DM? Client Engines), with each
hospital running one DICOM server (CTN). The Server Engine was configured to
manage up to ten sessions in parallel with each one of the hospitals, so it can transfer
in parallel as many slices as defined sessions. This means that our server can deal
with pulling up to 80 DICOM slices in parallel (10 slices per hospital).

capacity= 8 hospitals * 10 sessions/hospital

!distributed hybrid queries for the medical case.
2Without considering the time of running an algorithm, which must be highly costly, but which
depends of the algorithms by themselves, and on the Grid computing performance

140

capacity= 80 sessions (or slices in parallel)

Figure 6.1 illustrate the situation, and the annexe 9.4 presents a real example of
an engine configuration.

Queryl Query2 Query3 Query4 Query5 Query6 Query7 Query8
timen \\ //
time2 \ /
timel %
time 0 \X\&%-_M

i

. Lo

SIS S SRS ISaYs
TEYY YeoR
” ” ” ” ” ” Wy Li

Seql Seq 2 Seq 3 Seq 4 Seq 5 Seq 6

capacity = 8 seq * 10 files= 80 filesin parallel

S 4 Al D

2)
S b oo Ao A e Mo Nosm A g A
m i m Mmoo mm i
Hospl| | Hosp2| |Hosp3 Hosp 4 Hosp 5 | Hosp 6 | Hosp7| [Hosp8

F1G. 6.1 — Saturation : Using all the capacity
The big square represents the server engine, and small squares are the hospitals (DICOM
servers). The external arrows in the top side of the figure are the queries which arrive at the same
time to the DM? QUery Driver (a circle). The external arrows in botton of the figure show the
DICOM pulls of one multi-slice image by hospital. The internal arrows represent the queues of
messages by each one of the ReQuest Drivers (RQD), which are designed as circles in the botton
side of the engine. The time lines represent the moments in which the queries arrive to the
engine ; thus, in this case, all the queries arrive at the same moment t0

We have stored test sequences of DICOM images into the 8 different simulated
hospitals. Each sequence is made of exactly 10 slices (as shown in figure 6.12). This
allows us to transfer in parallel all the slices of one image.

141

6.2 Performance Tests

6.2.1 Message Passing Test

As defined in the architecture chapter, the message passing layer is only used
between local processes, so it is based on IPC mechanisms. A message passing tool
such as PVM or MPI is based on remote communication and it is an additional
weight for the DM? engine which can be unnecessarily costly.

To test these hypotheses, we compare the behavior of DSEM? to PVM. We
made an experiment where a set of messages were transmitted back and forth (echo)
between a client program and a server program which uses PVM in the first case,
and DSEM? in the second case. We measured the response time (microseconds) of
the round trip set of messages.

In the first (see figure 6.2) experiment we transmitted a variable number of
messages (500, 1000, 1500, ..., 5000 messages), with a constant size of each message
(15 Kbytes)®. In the second experiment (see figure 6.3) we delivered the same set of
messages, but changed the size of the message (15KBytes, 20KBytes, 25K Bytes, ...,
110K Bytes).

Response time for N echo messages
3.5e+06 T T T T

' hDSEMO —

3e+06
2.5e+06
2e+06
1.5e+06
le+06
500000

response time (microseconds)

0

msg

FiGc. 6.2 - DSEMO vs PVM
500, 1000, 1500, 2000, 2500, 3000, 4000, 4500, and 5000 messages of 15 Kbytes.

This experiment allows us to conclude that the behavior of DSEMC is quite
similar to that of PVM (local communication) for a fixed message size of 15 KBytes
(see figure 6.2). When the size of a message increases, the performance of DSEM? is
better. Figure 6.3-(i, ii and iii) shows a 3D plot of the same data with different angles
of view. The surface over, is the plot of PVM data, which means that response times
are greater than the DSEMC ones (surface under). One can note that the distance
between the two surfaces increases when the size of the messages also increases. The

3At the moment, DSE® manages an average message size of 15K.

142

best performance of DSEM is due to the fact that it works exclusively on share
memory, while PVM must deal with network operations. However, this is evident
when the number of delivered messages increases.

6.2.2 Query for Retrieving an Image

In chapter 5 (section 5.3.1 - figure 5.8) we illustrated a query for retrieving an
image (set of slices) from its DICOM storage. In summary, a request (getDM2Image)
is made to a QUery Driver (QUD), and it : (i) localizes the image (in a hospital,
another engine or cache), (ii) gets the image, (iii) assembles the image, and (iv)
copies the image to the requester.

The query is resolved in six steps, as shown below. Each one of these steps is
represented as one phase of the query, and then analyzed for its processing time.
Thus, the query :

— looks for the image in the cache tool,

— uses the database (metadata TKD) service to locate the DICOM files from

which the image must be assembled,

— looks for slices into the cache,

— copies the image from the DICOM server,

— assembles the image (set of slices) into a single file (by using the image tool),

— stores the image into the cache and return it to the requester (grid or user).

As described in section 6.1, the test system is able to transfer 8 images (each one
of 10 slices) at the same time ; that defines the system capacity. A concurrent query
of more images, will produce a queuing of queries.

First, we tested 16 queries % in parallel, to study the application profile. What
we were looking for was the participation of each phase of the query in the final
response time. These are hybrid queries as the ones described in section 5.3.1 and
figure 5.8.

Figure 6.4 shows the percentage (Y axis) of the total response time by each phase
of the query, for each one of the 16 queries (X axis). For example, in query number
2 (X axis), the DICOM phase has taken 50% of the total execution time.

In these processes there are services over which we have no control, such as those

that follow :

— Cache : we made this test with a prototype cache, but a superior one is being
developed at LIRIS by our research team [187] [92] [93]. Its time consumption
does not exceed 9%. Although the cache must be accessed up to 4 times, in
this query we have plotted only the items i and i of the case scenario : (i)
checks for answers to the hybrid query, (ii) checks for sequence of an image
existence, (iii) checks for slices existence, and (iv) registers slices and sequences
then into the cache.

— Security : we consider that the hybrid query starts once security was checked,
so the response times do not include the time of security checks °

4When receiving 16 queries, the engine can process eight (the system capacity) of them concur-
rently and must queue the other ones for later processing.
5Qur research team [187] [90] [91] is also working on this topic.

143

Response time for N echo messages (different message sizes)

)) "data,dsem” —+—
response time (microseconds) "datapvm" K-

3e+07
2.5e+07
2e+07
1.5e+07
1e+07
Se+08

r of messages

(i)

Response time for N echo messages (different message sizes)
response time (microseconds)

3e+07 - "data,dsem” ——
2.5e+07 "data,ym” oo
2e+07
1.5e+07 |
1e+07

(i)

Response time for N echo messages (different message sizes)

_ _ "data,dsem” ——
response time (microseconds) "data,vm" ---x---

ke AT
3e+07 R

2.5e+07
2e+07
1.5e+07
1e+07
56+08

509 00Qq 50800

@ S E0ARIOHE
number 50%89%000,50@000 o 10 i (iii)
DSEMO0 vs PVM (not remote) for 500, 1000, 1500 ... 5000 messages of 25 ... 110 Kbytes. These
plots are 3-D views generated by using gnuplot with coordinates as follow : (i) 60, 120, 1, (ii) 60,
80, 1, and (iii) 60, 30, 1

FiG. 6.3 - DSEMO vs PVM.

144

— Grid : this time only concerns the registration of sequences of images, not the
transmission of the images. Its participation is about 4%. Our meassure finishes
before submitting a job to the Grid : the time of processing a submitted job
is out of our control.

PHASES of queries

£ 70 T T T T T . T
%: e spitfire
= 60 - PO DICOM ------- -
o N, J/ IS img TOD ----:----
E 5k s ' dg SE - -
o gCachel -——-
S 40 - gCache2 ------- _
2
E 30 |
o 20 R \\,.-»-m\\"l,—’ 1
() . >
= 10| 7 .
S o e T T

0 2 4 6 8 10 12 14 16

query

F1G. 6.4 — Hybrid Query : performance of each phase

Percentage of time for solving each phase into the hybrid queries number 0, 1, 2, ... 16)

The experiment shows that the main part of the time of the query is consumed
by two phases :

— Images manipulation (about 25%) : It is a TOol Driver (TOD) which is in
charge of assembling the set of DICOM slices into a single DICOM file. Per-
formance could be improved by developing techniques of parallelism in this
driver, but that scope is out of our research interests. Our architecture allows
one to change this TOD by one which is faster.

— DICOM pull (about 60%) : This phase is managed by a ReQuest Driver (RQD)
in charge of getting in touch with different DICOM servers (CTN) at hospitals.
We cannot modify the DICOM server.

These execution time percentages are normal because they correspond with the
time to access images and to manipulate them. The three following experiments
address the DICOM phase of the query, because this access to data is the most time
consuming phase.

6.2.3 Saturation Condition

We have designed an experiment to evaluate the behavior of the system when
its available resources of data access are saturated. Figure 6.1 illustrates the testing
conditions, and the annexe 9.4 describes the configuration details.

The experiment consists of using the whole capacity of the system, as described
in section 6.1, so we issue concurrently 1 query (getDM2Image) for each one of the
8 hospitals. Because each query concerns a sequence of images with 10 slices, that

145

means that our concurrent queries stress the system to pull 80 DICOM slices in
parallel, which is exactly the configured data access system capacity.

The figure 6.5 plots the total response time (Y axis) of each one of the 8 queries
from the initial time ; however, is important to understand that the total time of the
experiment is the one plotted for the last finishing query. In other terms, it shows
the total time from the start of the experiment (¢0), until the end of each query,
e.g., the first plot (6.5-1) shows that the experiment has a total duration of 16.5
seconds; the first query has finished 12.5 seconds after the experiment has started,
the second 14 seconds after the experiment started, etc. This means that the whole
experiment starts at t0 and ends at tn.

The first figure (6.5-i) shows what happens when considering the access to disk.
The second figure (6.5-ii) illustrate an experiment without disk unit, and the third
(6.5-iii) is a comparison of the two previous curves.

We see in (6.5-1) a bottleneck in the access to the disk in the server engine
The system has succeeded in pulling the 80 DICOM slices, but it tried to write (to
the disk) almost everything at the same time, which produced a traffic jam. The
plot shows the same response time from queries 3 to 8, but a different response time
for the first two queries. What happens is that the system succeeds in finishing the
first two queries 7 before the bottleneck in the disk, so all the other queries finish at
the same time.

In figure (6.5-ii) the cost of writing to disk is not considered, so we can see a
reasonable growth in the response time for these eight queries. It increases from 2.9
seconds to 4.5 seconds in the last query. The cost of concurrency is 1.6 seconds (50%
of the first one). The system makes one query in 2.9 seconds ® but the eight queries
in 4.5 seconds.

The comparison of these two plots is shown in figure 6.5-iii. It is clear that the
cost of the disk is important. The time for ending the first query, is four times more
when writing to disk (2.9 seconds vs 12.5 seconds). It is similar for the total time of
the experiment (4.5 seconds vs 16.5 seconds).

We consider that the system (DSEM/DM?) performance is independent of the
performance of the disks, once they can be changed for the highest technology wi-
thout modifying the DSEM/DM? system. However, this demonstrates clearly that
when designing an operational system, attention must be put on the storage facility
efficiency.

A more realistic situation, as the one described in section 6.2.5, does not present
this problem. Queries arrive following a random access pattern, so the system has
an advantage in resolving one query before the next one arrives.

Any way, these experiments clearly show : (i) that our system can cope with very

6

6All the sequences of images are transmited from the different hospitals to the server engine,
where there is only a single shared disk.

"To finish a query the system must transfer up to 10 files in parallel, where each file transfer
corresponds to an independent task ; so, two concurrent queries may have not finished even if many
of their tasks (files transfers) have ended. For example, a query can complete 9 transfered files (of
ten), but being waiting for the last one, which the operating system is writing to the disk yet.

8This response time was almost the same (2.75 seconds) for an experiment with only one query
using the same machine and configuration. The difference to 2.9 seconds is represented in the
advantage of having available the whole system in order to solve a single query without concurrency

146

Response time for (1 query ONLY/ hospital) - hDSEM 0.1.22
17 T T T

16.5
16
15.5
15
14.5
14
13.5
13 L L L L L L

8 Hlospitals '

response time (sec)

queries (1)
Response time for (1 query ONLY/ hospital) - hDSEM 0.1.22
4.8 T T

8 I-iospitals iF] parallel '

»
o
T

response time (sec)

7
queries (11)
Response time for (1 query ONLY/ hospital) - hDSEM 0.1.22
18
' "8 Hospitals - NO WRITE TO DISK ———__
16 | B 8 Hospitals ------- b

response time (sec)
-
o
T
1

queries (111)

F1G. 6.5 — Saturation of the System (1)
8 hospitals in parallel ; one sequence by each hospital. (i) Considering write to disk. (ii) without
write to disk. (ii1) comparison.

streesing conditions, and (ii) that response times are compatible with physicians
demands.

6.2.4 Overload Condition

The second experiment uses the same machine and data conditions as described
above (section 6.2.3) but the goal is to require from the system, more than its ca-
pacity for data access. So, instead of one query by a hospital, we deliver 10 queries
per hospital at the same time (concurrently). Figure 6.6 shows that these stressing
conditions produce a queue in each one of the request drivers (RQD) for each hospi-

147

tal. The system is required to pull 800 slices ? in parallel while the maximum delivery
is 80.

Query j+1

Queryl Query3 (O N — - Query80

Query 2 Query 4 N \QUE\WS Quleryj L,
NN\ LS

time0

timen

I :
l 7 :
|

O 0O 0O 0 O 0 O
e W
WQD% m m W@% W WQD% m m

capacity = 8 seq* 10 files= 80 filesin parallel

S 4 Al D

2)
R b oo Ao A s Moo oo A g A
m i m Mmoo mm i
Hospl| | Hosp2| |Hosp3 Hosp 4 Hosp 5 | Hosp 6 | Hosp7| [Hosp8

FiGa. 6.6 — Overload

Using more than the capacity

Figures 6.7-1 and 6.7-ii show what happens when the operation of writing to disk
is considered or not . The behavior is similar to the one described in section 6.2.3.

6.2.5 Random Access Pattern

Sections 6.2.3 and 6.2.4 show conditions of saturation, but the reality is quite
different : queries do not always arrive at the same time. We have run an experiment

910 sequences of images * 10 slices/sequence * 8 hospitals = 800 slices

148

Response time for (10 queries/ hospital - hDSEM 0.1.19)
120 T T T T T U T

100

[or]
o

response time (sec)
(2]
o

40
20
0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
queries (1)
Response time for (10 queries/ hospital) - hDSEM 0.1.22
30 T T —T T T T
8 Hospitals - NO WRITE TO DISK ———
25 B

n
o

—_
o

response time (sec)
o

(6]

o

queries (11)

Fia. 6.7 — Overload

8 hospitals in parallel ; ten sequences by each hospital

in which the queries arrive separated by a random delay whose duration follows a
Normal or Poisson distribution of probability (poisson desviate [99] [101]) '°.

Figure 6.8 shows that : (i) the queries arrive to the engine at different instants
of time (10, t1, ..., tn), and (ii) the size of the internal queues by hospital (RQD) is
different, depending on the arrival time.

We also measure the response time (considering access to disk) of each query,
but we are interested in looking at its behavior, and at the queue size at different
instants of time. In this experiment we aim at observing how the system manages
its load without crashing.

In figure 6.9 we plot the response time for each one of the issued queries (10000
queries). In this figure, the time between queries was simulated from a random source
with Normal distribution ! :

mean = 2 seconds
standard deviation = 1 second

10We use the Poisson distribution because it is classical in an evaluation of queue systems. The
Normal distribution was used for comparison reasons : it plays a central role in statistics and has
been found to be a very good model for many distributions that occur in real situations.

1 Erom the experiments above, we found a response time of at least 4 seconds in the solution of
a concurrent query ; so we selected a mean value of less than 4 seconds for guarantying that the
system must solve more that 1 query at a time. The standard deviation of 1 second eventually
allows an occurrence of two simultaneous delivered queries, which means, a time of zero seconds
between two queries.

149

Queryl Query3

Query4 Query5
i / Queryj Query j+1

Query 80

) \ Query 2[Query N
timen
N Lo\ |4
timel W Iy// \‘ V
time 0
Queue o o Queue
ueue ueue
i Queue Queue
Queu Queue l
R H
Queue l l
query seq 1 query seq 2 queryseq3 queryseq4 query seq 5 query seq 6 query seq 7 query seq 8

SRR SI)

‘L v&b%\l“

Seql

b

‘L \fb%\l”

Seq 2

| ‘fim

‘L v&b%\l“

Seq 4

O 0 @
TR LS

! \fa%\j

Seq5

v

DIcom
RQD

"

Seq 6

capacity = 8 seq* 10 files= 80 filesin parallel

I

M

L/

"

Seq7

M

DIcoM
RQD

o

PULL @ @

bicow bicow ST Pk I B ST PULL /}
I 1 i)) T,

Hospl| | Hosp2| |Hosp3 Hosp 4 Hosp 5 | Hosp 6 | Hosp7| [Hosp8

The figure 6.9 shows that in these experimental conditions the response time

F1G. 6.8 — Random Source
random generation of queries

remains very stable and very acceptable (less than 7.1 seconds).

For the experiment illustrated in the figures 6.10-i and 6.10-ii, the time between
queries was simulated from a random source with the distribution Poisson 2. When
using the distribution Poisson in our experiments we use a mean of 2 seconds,
similarly as for the normal distribution. In figure 6.10-i we plot the size of the query

12We use the Poisson Desviate, which gives an integer value that is a random deviate drawn
from a Poisson distribution of the mean. This is interpreted as a waiting time between events. The

Poisson Distribution is ussually used for modeling rates of occurrence.

150

. TIME FOR EACH QUERY WHEM A RANDOM SOURGE FROM A NORMAL DISTRIEUTION OF
7 T T T

TIME
L QUERES -~ .

B
5
4
3
2

response time (sec)

1+ | -

ol I I I I |
0 2000 4000 6000 8000 10000 12000

queries

FIG. 6.9 — Stressing the System (Normal)

A source of random query events. The response time for each one of 10000 queries

queue every 3 seconds (1200 samples each hour); it plots the number of queries that
the system has to finish (regardless of the hospital concerned) in an instant of time
(ti).

We see that the system becomes loaded by instants (the queue or the response
time increases), but the internal interaction between processes allows one to process
them. In fact, we see a stabilization of the response time in the queue query size
around an average value (2 queries).

In figure 6.10-ii we plot again the response time per each one of 2300 queries.
Because queries do not arrive at the same time, the system has the possibility of
dealing correctly (most of the time) with the access to the disk ; however, oppositely
with a Normal distribution of the queries, here, with a Poisson distribution the
problem of a bottleneck while accessing (described above) the disk can appear by
short chunks of time. It can be shown in the impulses shown in figures 6.10-i and
6.10-ii. It is important to see that despite these bottlenecks, the system can recover
itself and continues running normally.

In fact, figure 6.9-i shows that the system rarely has more than 4 concurrent
queries waiting to be solved (queue), which is quite different than the cases in sections
6.2.3 and 6.2.4; additionally, those queries are being processed in different phases,
because they arrived at different moments. This last sentence means that, even if
there are 4 or more concurrent queries, one could be in the DICOM phase, while the
other is being processed in the database phase.

In conclusion, these first series of experiments show the efficiency, the scalability
and the robustness of the DSEM/DM? system. Under very stressing conditions, the
system never crashed and gave very effective response times. Finally, these experi-
ments demonstrate the feasibility of the system both in terms of its capability to
cope with high numbers of queries and its compliance with physicians constraints in
terms of response time.

151

Queries Queue

20 T T T T T T T T
QUERIES
o 15 F B
()
=}
o
£
gwr i
5}
>
o
5 4
0 MA Il I dl 1
0 200 400 600 800 1000 1200 1400 1600 1800
Time 1
RESPONSE TIME FOR EACH QUERY
140 T T T T
TIME ——
@ 120 | .
c
8 100 -
2
o 80 i
£
~ - .
L 60
2
S 40 i
Q.
7]
& 20} -
0 | 1 ; | ; 1 . |]
0 500 1000 1500 2000 2500
Query (ii)

FI1G. 6.10 — Stressing the System (Poisson)
A source of random query events. (i) size of the queries queue every 3 seconds (1200 samples each
hour), (i) response time for each one of 2300 queries.

6.3 A Medical Distributed System

So far we have proposed an architecture (DSE) for building distributed systems
which address the problems of the Medical Community, and have developed a pro-
totype from that architecture. Our implementation has separated the middleware
components (DSE®, DSE', DSE?) from the application components (DM?).

In chapter 5 we addressed the implementation issues and illustrated the DM?
from the server point of view : we presented the main queries and showed how they
are solved by interacting with different components (see section 5.3.1). Chapter 5
presented a higher level view of the DM? system, by placing emphasis on the services.
In this section we present a medical application which uses the DM? system, and
which we have tested as a prototype implementation. This application is presented
from the user point of view.

In our implementation of DM? we offer the API3 for communicating with a DM?
engine. This API is useful in building interfaces (e.g., GUI) able to offer access to
the DM? services. We have not yet implemented graphical interfaces, but we have
implemented a command line interface '3 which allows testing and using all API3
functions. Therefore, we present below some of these commands in order to illustrate
the use of DM? (sections 6.3.3, 6.3.4 and 6.3.5) ; however, what we want to illustrate

13The command lines are integrated with the API3, which is available on the Internet. The link
isin 9.7

152

are not the commands by themselves, but we aim at present the different information
which an user can obtain from the DM? system.

In other words, chapter 5 put the emphasis on the 3rd layer (application), and
here we address the 4th layer (user). Additionally, we summarize the whole DM?
system in section 6.3.1. The examples illustrated in this section were all ran by
using the DM? prototype, except the ejection fraction algorithm which is still being
developed, but once finished can be executed by DM? as any other one algorithm.
The environment details as well as the configuration ones, are presented in the
annexes chapter (9).

6.3.1 Overview of the DM? system

A DM? engine is the brick for building a medical system which provides secure
and confidential access to the medical data sources. It provides access to medical
data stores and to external services such as Grid resources, and also offers services of
high throughput computing by using a Computing Grid. These possibilities should
facilitate research on pathologies and epidemiology, allow researchers to assemble
virtual data sets suited to statistics extraction or study of rare diseases, increase
the scale of experiments to levels not reached before, provide the access to image
processing services, and ease the access to such image processing tools for the end
user.

However, such a system is far from being completed today. Although there has
been enormous progress, Grid projects are not very stable environments yet. Se-
curity and confidentiality for medical data are subjects of research, and the access
regulation is still a barrier. Encouraging the medical community to share its data is
another issue that is facing a human barrier. Despite these challenges, our engines
address some of the problems to be solved (see section 4.8.2) and allow us to im-
plement a prototype system, as described in figure 6.11, and to test some parts of
it.

The whole system is composed of a set of DM? engines which are divided into
DM? Server Engines and DM? Client Engines. The Server Engines are in charge of a
geographical region (Lyon, Toulouse, Bordeaux, etc) and have communication with
the other regions (Server Engines also), and also with a Grid in order to have access
to computing and storage resources. Each Server Engine hosts different hospitals and
end users (physicians, health centers, researchers, etc). Hospitals are implemented
with different pieces of software (CTN [135], DCMTK [136]) for dealing with medical
data , with a DM? Client Engine which ensures connection with the region server,
and with medical image devices (Magnetic Resonance Imagers -MRI-, 3D Computed
Tomography scanners -CTscan-, PET, X-RAYS) all DICOM3 compliant. Therefore,
each region has a hierarchical structure from the scanners up to the engine server,
through the client server.

The raw data are acquired by the scanners, but they become structured (with
strong semantics and metadata) once imported into the system. End users get
connection to the system and make hybrid queries over this data, which means,
that they submit queries that need not only access to the metadata, but also to the
image’s content. This second part of the query, also requires computing in order to

133

Y1
‘ [e)e)Xe) ‘
D DM2 CLI
- LYy | A

SR - [O00 |-~
N]

A | DM2SRV |
N vy
\..-\ \‘,(‘ . f'oo;o‘
"\ ,\«“" v!v] . omreL
\ '-\l \“’\\n ’: “
Y e E‘— -
\ L ’\‘\f‘]
‘ [ONOXO) ‘ A :—
_ ‘—
,,_ ‘ DM2 SRV ‘ ‘~“'.)
1 /~"
u\://\l :‘— ‘ DM2CLI ‘,
: N
i
H 4 ‘DMZCLl
S S AL
L N I AR
,,,\0 'R I
N[000 |/
| DM2 SRV | === ‘DMZCL| ‘
—OooU 997
Ty

F1G. 6.11 — A DM? System represented as a set of DM? Server Engines and DM?
Client Engines. MRI devices are the raw data acquisition point.

process the query. A user can add new data to the system, such as new processed
images or relationships between images and results.

Configuration examples for a DM? Server Engine and a DM? Client Engine are
shown in the annexes 9.1 and 9.2. Sections 6.3.3 and 6.3.4 show examples of medical
applications. The section 6.3.2 shows the data acquisition mechanism.

6.3.2 Image Capture

We have installed a DM? Client Engine at the Cardiological Hospital of Lyon in
order to manage the image data capture process. The internal design of this engine
was described in chapter 5. It deals with : (i) the registration into the DM? Server
Engine and into the Grid System, of each slice in the sequence of images, (ii) the
extraction of useful metadata and their transmission to the DM? Server, (iii) issue of
a query to the Server in order to process the images which are being captured ; the
processed information can be used as a higher class of metadata (e.g., histograms,
texture information, etc '4).

14The DM? includes image processing algorithms. Those algorithms are matter of research at
the CREATIS laboratory and DM?2 provides the mechanisms for applying these algorithms to an
archive of images. We have tested some of them, as is shown in this chapter.

154

Image data are acquired from Magnetic Resonance Image (MRI) devices and
stored in DICOM3 format [49]. The MRI use the DICOM-net part of the DICOM
standard in order to transfer (DICOM push) the sequence of images to a DICOM
server which extracts the in-file metadata and stores it in databases where they can
be later exploited. For this purpose, we have installed CTN [135] at the Hospital '°.

One problem to deal with, is the N-dimensional nature of the images, and es-
pecially, their complete registration into the DM? system. As described in chapter
2, a 3D cardiac sequence of images represents a 3D volume evolving over time. The
image 6.12 shows seven sections of a heart along 30 instants of time. Each one of
those sections represents a 3D cardiac volume, but is composed of seven slices (2D
images). So, this sequence of images has 210 slices ' which must be independently
registered into the DM? system but also must exist as a unique image having a rela-
tionship between them. Those 210 images are called slices, and each one is stored as
an independent DICOM file. One of the things that DM? does is to deal with that
set of files but also builds an assembled version of the sequence in only one file; in
this way, the storage details become transparent for the end user and the Grid.

One difficulty to be resolved was how to automatically intercept the DICOM
push which is done from the MRI, and to produce an action into the DM? system. A
DICOM push is used to transmit images to a DICOM Server (e.g., CTN or a PACS)
from the scanner console : the images are not pushed to DM2. So, producing an
automatic action into DM? means modifying external software (CTN, or the PACS,
or the MRI console software). We were looking for a more general solution because
we did not want to modify other systems.

The second concern, was how to know when a sequence of images was completely
transmitted ; which means, how to find out that the last DICOM push (e.g., the
210th slice or file) corresponds with the end of the sequence of images. The third
problem was to know the exact order of the images in the sequence.

The solution was provided by DCMTK, because it has mechanisms to automati-
cally execute line commands of each new image, and to execute additional commands
when an end-of-study (DICOM field) or a timeout (seconds) is determined. So, in
addition to CTN, we have installed the DCMTK [136] DICOM Server as a wrapper
between CTN and the DM? Client Engine. As described above, this wrapper is a way
of dealing with the registration of sequences of images and also a way of automati-
cally capturing the scanning events (DICOM push from the MRI). The MRI scanner
transfers images to DCMTK instead of to CTN, and then, DCMTK forwards those
images to CTN. What DCMTK does additionally, is to execute DM? commands in
order to import data and metadata into the DM? system (see the figure 6.13 and
annexe 9.3 for details of configuration).

DCMTK can deliver DM? commands each time that a new file is registered into
the DICOM server. Indeed, it is possible to apply an algorithm list to the captured
images. For example, in the database we can define the list of algorithms to be
applied for each one of the captured images of the heart by a particular radiologist.

15The Cardiological Hospital of Lyon is considering to install PACS and RIS systems. The PACS
archive the images and allow image transfers. The RIS contain full medical records : image-related
metadata and additional information on the patient history, pathology follow-up, etc.

167 2D images by section x 30 instants of time = 210 slices or files

135

For example, we can define the algorithms mean and histogram to be applied to a
set of images; thus, these images are pre-processed in order to get their mean and
histogram. These are new high level metadata which are kept in the database and
can be used in order to reduce the search domain for future queries. A Computing
Grid helps by providing the required resources in order to pre-process this sequence
of images, when necessary 7.

6.3.3 Similarity

Physicians are often interested in looking for medical cases similar to the ones
they are studying (see section 2.3 in chapter 2). A case may be identified as “similar”
if the image content is similar (e.g., the same region of the body, the same kind of
acquisition) but this is often not sufficient to discriminate between a set of acquisi-
tions. An alternative way to compare medical images is to use similarity measures
[28]; for instance from the gray level intensities in the images, one can compute se-
veral measures [44] : (i) simple differences, (ii) coefficient of correlation, (iii) Wood’s
criterion, (iv) correlation ratio, (v) mutual information or entropy, etc - see annexe
10.1.

Given an image of interest (source image), a hybrid query can be executed as
a pre-selection, first, of possible images to compare, and then an image content-
based analysis on these images is run to search for most similar images. The pre-
selection is based on SQL database queries, and aims at decreasing the domain
of comparison; metadata such as the image region, modality, or orientation can
be considered, but also pre-computed high level metadata (if available), such as
histograms of intensities. Figure 6.14 shows a desirable result for the process.

Although each measurement is not necessarily very compute intensive, the com-
parison of a sample image against a complete database is intractable, in a reasonable
time, on a single computer due to the size of medical databases. The actual cost of
such a computation depends on several parameters such as the input image size and
the computation precision desired.

Similarity Usecase

Dr. DELON looks for heart images similar to the one he has just acceded in order
to confirm his diagnosis. He wants to rank existing images through a similarity score
resulting from a computation involving his patient image and an image database.
Once the images are ranked, he needs to visualize the most similar cases and their
attached diagnoses.

First of all he queries the DM? System in order to get a list of heart images
(region="HEART") of his patients (radiologist—"P. DELON”), which where acqui-
red by a M.R.I device (Modality="MR”) 8. This is information in the DM? client
database and is accessible by executing a line command (which we did not consider

17Qnly if the algorithm to apply is time-consuming

18 A good criterion of pre-selection could be, for example, the ejection fraction, which would be
a pre-computed metadata, but is an algorithm been developed (at CREATIS), yet. So, we could
select the sequences with an ejection fraction greater than 0.5 (e.g.)

156

worthwhile to describe here) or by executing (through a GUI) a function of the DM?
interface : both of which use the API3 in their internals.

He receives a response with a list of DM? sequence of images, which he requires to
compare with another image he just registered in the system. For this purpose Doctor
P. DELON chooses the similarity algorithm’ of his preference (e.g. “Montagnat”
implementation [44], using the “wood’s criterion”).

Let us suppose that we have 8 sequences of images, and that each sequence has
210 slices as show in figure 6.12. The DM? Server Engine receives the query and
retrieves the sequences (which means 1680 slices '°) from the hospitals or from the
cache (to improve latency). The engine translates the DM? file names into Grid file
names, and then schedules one job for each comparison, into the Computing Grid.
The Grid returns the results to the DM? System, which are backwarded to the End
User - (Dr. DELON), who receives a measurement of similarity for each one of the
sequences of images..

In the case of the cardiologist who would prefer to validate the results, he can
re-submits the query but using another algorithms’ implementation (e.g., “Pauna-
Clarysse” [94], choosing the same “wood’s criterion”).

When he asks the system to visualize the sequences, slices are assembled in a
single 3D image that is returned to the cardiologist for visualization.

The diagnosis he makes for his patient can be stored in the information system
enriching the global knowledge, as well as the patient record. The diagnosis becomes
available in a text file, so it can be stored in the database.

6.3.4 Segmentation of Cardiac Volumes

The knowledge of the heart anatomy and its functions is fundamental for studying
ischemic diseases. Recent research [95] at CREATIS has addresses the problem of
extracting the heart anatomy from the magnetic resonance cardiac images by using
deformable elastic template techniques. The algorithms are based on a deformable
model composed of topological and geometrical characteristics of the two ventricles
of the heart ; however they are very processor consuming.

The det3 [95] algorithm aims at segmenting (3-D) the right and left ventricles
of the heart, from multi-phase, multi-slice M.R. Images. This means automatically
extracting the pericardium and endocardic surfaces, in order to allow further clinical
measurement of parameters.

This will allow one to generate a 3-D model of the heart having its morphology
and functionality. The knowledge of the cardiac muscle bio-mechanics allows one
to better understand the physiological reality and is very useful in clinical prac-
tice to evaluate the functional state of the ischemic heart. The figure 6.15 shows a
Segmentation of Cardiac Volumes.

Segmentation Usecase

Dr AUTEUIL is looking for sharing with the scientific community the data which
he has collected about morphology and the function of the heart. In order to do that,

19210 slices x 8 sequences = 1680 file transfer in parallel

157

he is building an anonymous database with 3-D DICOM sequence of images (multi-
phase, multi-slice) of the two ventricles, acquired in a M.R.I.

The following sequence of operations has to be performed : (i) interpolate the
sequence of images into a single 3-D volume file, (ii) calculate the external forces
which derive from the image, to be used into the deformable model, (iii) produce
a 3-D segmentation, (iv) compute a measurement of ejection fraction, and (v) keep
the output (text files containing the geometrical model) and make relationships
with the source image. The former two steps are computed by an algorithm called
interpolation [95], the third one by the algorithm det3 [95], and the forth by
the algorithm ejectionFraction [95] which is still being developed at CREATIS.
The ejection fraction, as well as the produced output files, will become high level
metadata, will be be stored into the database, and used later in order to reduce the
search domain over the image database.

The algorithms are very time consuming, thus a high through-output computing
resources are required. Dr. AUTEUIL makes a DICOM push of the sequence of
images, from the console of the M.R.I. device (as it was described in section 6.3.2),
so the information becomes available to the DM? System.

The algorithms are registered into the DM? System. Dr AUTEUIL has registered
an Algorithm List number to be applied to all the images he has acquired. Thus, DM?
applies the algorithms in the registered list to each one of the captured sequences.

Eventually, he receives additional images from his colleagues for inclusion into
the database. Dr. AUTEUIL has an alternative process for including the images
into the system, and producing high level metadata. He can register the sequence
of images into the DM? system, and then apply different algorithms (an algorithm
list) to that sequence. As an illustration, the commands below can be automatically
generated by a user interface in order to allow Dr. AUTEUIL to make the inter-
polation (interpolation algorithm) of the DICOM sequence ?° before applying the
segmentation (detd) and the ejection fraction computation 2!.

./dm2cmd -ingalgo interpolation

-ids
1.3.46.670589.5.2.14.2198403904.1062079142.135100
-arguments

slice001,

slice210,
1.3.46.670589.5.2.14.2198403904.1062079142.135100.vol

./dm2cmd -ingalgo det3 -ids t0.par -arguments O

./dm2cmd -ingalgo ejectionFraction

-ids
1.3.46.670589.5.2.14.2198403904.1062079142,135100.vol
-arguments

0

20Remember that this sequence of images has about 210 slices

21The file t0.par contains all the required parameters for running the segmentation algorithm,
including the image file names. The first argument, set to 0, means no visualization (because a non
interactive algorithm is waited for DM?).

158

The segmentation process produces its output as text files, which are directly
related to the processed image. Thus, the Dr. AUTEUIL can keep the results and
his diagnosis in the database.

6.3.5 Second Similarity Usecase

The Dr. DELON has been realizing that it would be better if he only considers,
for similarity comparison, the images in the database which are in a range of 10%
of the source image ejection fraction 22. This means that if his patient’s image has
an ejection fraction of 0.5, he will compute similarity measures only for the images
into the database which have a ejection fraction of 05+-0.05.

In this way, the ejection fraction (pre-computed) is used in a basic database
operation (SQL select), and considerably reduces the operations to be done for the
query.

What Doctor DELON has to do is : (i) to compute the ejection fraction for its
patient’s image, (ii) to query the database for getting the images with an ejection
fraction within the specified range, (iii) to apply the similarity algorithm to the
image list that he gets.

22Being developed yet

139

160

t30

~N o o0~ W N P

time

space

t1 t2 t30 (i)
7 layers of slices by 30 temporal phases, which means 210 image files (DICOM)

F1G. 6.12 — Sequence of DICOM Images

161

console MRI-----+

DICOM push

console MRl ==~

CREATIS a

DICOM pull

t Hospital

CTN

I

DM2 CLIENT
ENGINE

metadata

CREATISISERVER

DM2 SERVE

metadata

ENGINE

DCMTK

push

metadata

F1G. 6.13 — Hospital and Server

F1G. 6.14 — Similarity from left to right : source image and matching images with
the highest to the lowest score. The image on the left side is the most similar to the

others/

score

1.0

162

0.65

GRID

0.55

(d)
Left column corresponds to the initial model, and the right column to the deformed model. (a)
orthogonal slices to Z, (b) and (c) orthogonal slices to X and Y, (d) 3-D images.

Fiac. 6.15 — Example of a segmentation result using the 3-D deformable elastic
template.

163

Chapitre 7

Discussion and Perspectives

“It’s going to take a little while for businesses to be confident that grid
computing works for them.”, Irving Wladawsky-Berger, IBM, USA

164

165

In this work we have proposed a high level architecture (DSE - Distributed Sys-
tem Engines) for building Distributed Systems (DS) with the constraints of high-
performance, high-throughput, and data-intensive management. This architecture
has provided the basis for the design and implementation of a prototype of distri-
buted medical image query system(DSEM/DM2).

Although our main target application is the querying of large distributed medical
image datasets by their content, the DSE framework is applicable to any DS showing
these constraints.

Our vision is that of a coupling between :

— a grid middleware used both as resource provider (computing power, storage,
sensors...) and integration framework offering tools for interoperability, security
and privacy enforcement, information sharing;

— distributed entities (the so-called engines) in charge of interfacing the grid
platform with decentralized (medical) information systems (e.g. medical image
databases or patient record stores).

The DSE architecture has been specially designed in order to offer flexibility,
extensibility and performance. These features are directly related to the specificities
of health networks and applications dealing with medical information. Medical infor-
mation is semantically complex, there is no universally accepted standard (DICOM
excepted), correlated data (e.g. the patient record) are disseminated over multiple
administrative entities with very different constraints, practices and policies (e.g.
University hospitals, family doctors, small care units, regional hospitals, etc.), the
number of actors is very large, end-user requests are of various types (epidemiology
studies, medical diagnosis, education...).

In sections below, we summarize our main proposals and contributions, discuss
their pertinence with respect to medical applications and to the implementation of
medical grids, and present perspectives.

7.1 The DSE architecture

The Distributed System Engines (DSE) architecture eases the design of Distribu-
ted Systems at a higher level. Its generic multi-layered structure enables adaptability
and scalability by differentiating the middleware issues from the application ones.
In the same way, the horizontal definition of each layer in different types of drivers
enables extensibility, openness and robustness.

Existing architectures such as MDA /OMA [191] propose a general vision of a
Distributed System (DS), but do not define a base generic component : we do not
only propose a model of DS, but we also define the logical structure a functional brick,
the Engine, on which we propose to build DSs. Oppositely, higher level frameworks
like MDA /OMA focus on the global interface and integration layer.

Thus, service integration standards as CORBA or DCOM define interoperabi-
lity between distributed objects, but do not directly address such problems as high
performance, access to sensitive data, massive storage and high throughput. They
are more focused on the interoperability than on the architectural definition of a Dis-
tributed System, specially a large distributed system targeting complex information

166

sharing and high performance.

We defend in this thesis that interoperability mechanisms should be considered
at an operational level rather than at the DS design level.

So, if desired or needed, the implementation of a DSE can have some elements
compliant with interoperability specifications or middlewares (CORBA, DCOM,
Java/RMI, OGSA, WSRF, DICOM...). This is a work to be done depending on
the specific application environment on which the engine will be deployed.

7.2 Integration of Resources

Computing and Storage

A DM? Engine is seen as a set of cooperating application services, not as a
resources provider ; in fact, an engine implements its services by using (transparently
to the users) external resources like high computing power and massive storage. For
doing this, it can use a Grid as a partner.

Distributed Engines (DSEs) used in the implementation of a Medical Application
(DM?) like the one described in section 5.3 have a two way communication interface
with the Grid. They can interface the Grid in order to get access to its resources
(computing and storage), or can be interfaced by the Grid in order to give it a
data-intensive access to (large amounts of) medical data registered in the Grid but
actually stored within the hospital.

We have tested our prototype by interfacing it with MicroGrid, and in a first
phase of the project with the DataGrid (DG) middleware. We implemented Re-
Quest Drivers for getting access to the DataGrid Database Service (Spitfire) and
defined also an API with a DG Storage Element, but that software was not enough
stable to allow us go on in the integration of these middlewares. Anyway, these
various experiments demonstrated the facility of adapting an engine to any Grid
environment.

Actually, many Grid projects (e.g. EGEE) use Globus as their core middleware.
In that perspective, we plan to make DSE OGSA- [137] or WSRF- [163] compliant.
In this way, DM? will become a grid service interoperable with other services and
will be able to take advantage of all resources and functionalities available on the
grid.

The framework proposed in this thesis has been designed to develop systems
based on the integration of services and tools within a distributed environment. We
have more specifically focused on the access to data, registration of data and meta-
data management in the context of Content-Based and Hybrid Queries of Medical
Images. The issue with this type of queries is twofold : (i) queries require an im-
portant computing power in order to be executed, and (ii) (sensitive) data to be
processed are distributed at a large scale. For instance, a single similarity query
issued by a user can produce thousands of image comparison sub-queries.

The interconnection of DM? and the Grid offers an very powerful way to register,
localize, retrieve, transfer and efficiently process such large amounts of distributed
medical images. Without the computing power and the large scale integration faci-
lities provided by the grid, implementing such an application would be untractable.

167

Furthermore, DM? engines can provide storage facilities to end-users/applications
by taking advantage of Grid storage resources, e.g. Hierarchical Storage Managers
(HSM) such as Castor or HPSS. For medical applications that manipulate huge vo-
lumes of medical image data-sets, this facility offers a unique way to get access to
very expensive storage technologies unaffordable for most of the medical institutions.

Access to data

The structure of Drivers, and specially the ReQuest Drivers (RQD), allows an
engine to be simultaneously connected to multiple instances of various database ma-
nagers. For instance, an engine can access (low level) different hospital databases
even if they are implemented with different database managers (MYSQL, ORACLE,
etc). At the same time, it can also access a Grid Database Service such as Spitfire *.
This makes possible the implementation of management tools of heterogeneous and
distributed medical metadata. This feature also makes possible the “factorization” of
multiple health actors under a single DSE manager. This is an important characte-
ristics in a context where not all the actors have the possibility to host a grid access
point (for security restrictions or a lack of technical competences or other reasons).

In the framework of biomedical grids, DM? allows one to access to and to mani-
pulate distributed medical image data sets and metadata bases. It also offers these
resources as a service which can be invoked by the users of the Grid. In this way,
DM? engines provide end-users with an access to external medical data and meta-
data which for security reasons can not be today permanently stored in the Grid
data space.

DM? can be built on top of a Distributed File Systems such as AFS/DFS. Dis-
tributed File Systems allows one to store and access to data at a very large scale
(up to thousands of nodes). However, it is not realistic to consider that all the ins-
titutions participating to a medical grid could implement the same distributed file
system, both for legacy reasons, economic reasons and security concerns. Thanks to
its structure of drivers, DM? offers the possibility to integrate in a single space of
sharing data stored in a distributed file system and data stored in hospital local file
systems, thus providing a global access to the data.

7.3 A Datacentric Schema

Medical Images classify in the kind of datasets proposed to be applied for a
Datacentric Grid [70] (see section 3.1.2) :
— they represent large volumes of data and require much computing power.
— they are geographically distributed ; medical information is collected in dif-
ferent health centers, hospitals, care units, even for the same patient.
— they are (in practice) immovable because of the confidentiality of the data and
the latency for fetching data.
The diversity of image processing algorithms could make interesting the cha-
racteristics of mobile code, considering a scenario for hybrid queries where a user

LA highest level access to database managers.

168

transparently moves her/his code to the data (distributed in multiple sites) instead
of collecting the data in a central place and then running the algorithm. It addresses
also problems of mobile users and security.

The Datacentric Grid is a theory which requires deep changes in the classical
computing concepts, and goes in a direction which offers a set of open issues in com-
puter science. However, the environment of execution at each site and the problems
discussed in section 3.1.2 make un-viable that option at the moment.

In this thesis we used the standard model (in its youth, yet) of Grids because
there exist developed platforms which can be used today, and because the Distributed
System Engines architecture has been designed to encompass all kind of application.
However, we consider the DataCentric grid model as an interesting direction of future
work for high performance medical image applications.

7.4 Images Storage

To easily manipulate medical images, we have designed a storage interface to
DICOM medical servers, on top of the DICOMS3 standard [49] [50]. This proved to
be difficult since DICOM data are not structured as flat files but as collections of
image slices (DICOM series) and DICOM slices are containing both raw image data
and metadata. This interface was developed as a ReQuest Driver (RQD) DICOM
compliant by using the DICOM Tool Kit (DCMTK) ; at the moment it is operable
with DICOM servers like CTN and DCMTK. Because it is DICOM compliant, it is
expected to work with PACS systems 2 without any modification.

Users and Grids can take advantage of this service for obtaining access to tem-
poral sequences of medical images (DICOM). Future work to be done, concerns the
implementation of OGSA/WSRF compliant drivers.

7.5 Conclusion and Perspectives

This thesis has offered to us the opportunity to propose a framework for desi-
gning and implementing distributed systems based on local services and data servers
while sharing a global data and application space through the connection to a grid
middleware. We in particular introduced a new multi-layered entity, the engines. Hie-
rarchically structured with respect to the semantic complexity of the implemented
functions, allowing one to define and integrate a variety of communicating com-
ponents, engines constitute the functional bricks on which we propose to design
distributed applications.

This framework has been specially designed to allow the implementation of ex-
tensible, open and secure high performance and data intensive solutions. A first
prototype of distributed medical image hybrid query system, DSEM/DM?2, has pro-
ved the feasibility of our proposals.

Future work includes :

2The Cardiological Hospital at Lyon, where we have done our tests, is considering to install a
PACS system in replacement of the CTN DICOM Server.

169

— the upgrading of our prototype into an operational system usable in a hospital
environment. Composed of a core middleware (DSEM) and a medical appli-
cation (DM?), the actual prototype constitutes a solid base to build the final
system.

— the adaptation of the DSE architecture to a datacentric model. A first idea
could be to interface DSE drivers with mobile agents [103]. However this will
require us to study new paradigms for sharing information (e.g., metadata),
enforcing the data privacy and maintaining an exhaustive and consistent view
of the information space and of the active entities, managing potentially mobile
users.

170

171

Chapitre 8

(Glossary, Acronyms and Definitions

“Cynics reckon that the Grid is merely an excuse by computer scien-
tists to milk the political system for more research grants so they can
write yet more lines of useless code.”, Economaist, June 2001

172

173

8.1 DSE glossary

Special terms used in association with the DSF.

Architecture : Definition of all the concepts required to build a multilayer
Distributed System Engine.

Applications (types) : Client and Server

Applications (External) : Applications that run in the same host than the
engine and have a IPC communication with the engine instead of network commu-
nication.

Applications (Client) : External processes to the DSE but exist in the same
local machine. They are able to issue a message to a distributed system engine, and
wait for a response.

Applications (Server) : External processes to the DSE but exist in the same
local machine. They are able to receive incoming messages from a distributed system
engine, and produce a response. A server application is based on IPC_in / IPC_out
processes which could start interaction with other processes into the DSE

Distributed System (DS) : A set of intercommunicating and cooperating
virtual components which we divide between engines and external tools and
services (also called machines)

Distributed System Engine (DSE) : Multi-layer architecture for designing
and implementing a Distributed System as a set of interacting engines, in an envi-
ronment with strong requirements of high performance.

Distributed System Engine Manager (DSEM) : Our prototype implemen-
tation of the middleware layers of the DSE architecture.

Distributed Medical Data Manager (DM?) : A medical system, developed
over the Distributed System Engine Manager (DSEM). It corresponds also
to an implementation of the application layers of the architecture (DSE).

Daemons (Services) : see Services (Daemon)

Drivers : are multi-process entities which handle different kinds of transactions
instead of single message.

Drivers (types) : QUery Drivers, ReQuest Drivers, TasK Drivers, TOol Drivers
Drivers.

Driver (QUery Drivers -QUD) : are processes in charge of managing a whole
transaction (query) made up of a set of Tasks and Requests

Driver (ReQuest Drivers -RQD) : are processes in charge of accessing remote
components such as other engines and external servers.

Driver (TasK Drivers - TKD) : are processes in charge of a specialized part
of a query (task)

Driver (TOol Drivers - TOD) : are processes in charge of performing internal
operations.

Drivers (Services) : see Services (Drivers)

DSE Drivers : see Drivers

Engine : A complex component, composed by a set of independent local pro-
cesses, which interacts by issuing messages between them. It has connections to the
external world, asuch as tools, services and other engines. It is a brick to build a DS.

174

Engine (Client) : A type of implemented engine for the DM? application. It
deals with the application issues in a hospital.

Engine (DM?) : Any engine for the DM? application.

Engine (Server) : A type of implemented engine for the DM? application. It
deals with regions of hospitals.

External Applications : see Applications (External)

IPC in / network out processes (IINO) : see Local Processes

IPC in processes only (IIO) : see Local Processes

IPC in / IPC_out processes (IIIO) : see Local Processes

Machine : External elements to a DS, in which there is not choice -or we are
not interested in- to make any modifications : they exist as they are, and all we can
do is to interface them. They represent tools and services which an engine can use.

Machine (types) : Client and Server

Machine (Client) : Any machine in the network side, able to get in touch with
an network in / IPC_out (NIIO) process.

Machine (Server) : Any machine in the network side, which could be reached
by an IPC_in / network out (IINO) process.

Message : a string of characters.

Message Passing Kernel (MPK) : is an entity in charge of providing routing
of messages between local processes.

Network in/ IPC_out processes (NIIO) : see Local Processes

Layer 0 (Message Passing) : is A set of processes plus a message passing
kernel (MPK)

Layer 1 (Transaction) : is a set of drivers

Layer 2 (Distribution) : is a set of internal tools and services drivers and
daemons

Layer 3 (Application) : is a set of services

Layer 4 (User) : a set of interfaces

Layers (Application) : The higher layers of the architecture including appli-
cation and user.

Layers (Middleware) : The lower layers of the architecture including message
passing, transaction and distribution.

Local Processes (types) : NIIO, IINO, 110, IT1IO

Local Processes (Network in/ IPC out processes - NIIO) : are pro-
cesses which have the ability to receive inner messages from the network.

Local Processes (IPC_in / network out processes - IINO)) : are pro-
cesses which receive messages by IPC mechanisms through the message passing
kernel (MPK), and send messages to the network.

Local Processes (IPC _in processes only - ITO) : are processes which prin-
cipal characteristic is receiving requests -by IPC mechanisms- from local processes.

Local Processes (IPC _in / IPC_out processes - ITIO) : They receive
requirements and issue also requirements to other processes using IPC mechanisms.

Package : a set of blocks of source code, which implement basic applications of
the DM? System. This code is is written as transactions (queries, tasks and requests)
and drivers.

Processes : see Local Processes, Special Processes

175

Special Process (Client) : A process of type IPC_in / IPC_out (I1IO) which
is able to issue a message into a distributed system engine, and waits for a response.

Special Process (Server) : A process of type IPC_in / IPC_out (IIIO) which
is able to receive an incoming messages from a distributed system engine, and pro-
duces a response.

Special Processes (types) : Client and Server

Query : see Transactions

Request : see Transactions

Service : is the job performed by an application and offered to its users.

Service (External) : is the work performed by an external application, and
used by an engine.

Service (DM?) : A service offered by the DM? application such as hybrid
queries, queries by content, or data access.

Service (DAemon - SDA) : is a set of 1 or many Query Drivers (QUD). It
deals with all the problems related to the accessing one DM? Service.

Service (DRiver - SDR) : is a group of RQD in charge of solving different
possibilities of a request, by accessing external machines.

Task : see Transactions

Tool (internal) : an entity having components of the three middleware layers
of an engine. It is used as an instrument for performing low level works.

Tool (external) : an instrument for performing low level work, but external to
an engine, e.g., a cache tool. In other words, it is an external low level service.

Transactions (types) : Query, Task, Request

Transactions (Queries) : are a set of Tasks and Requests

Transactions (Tasks) : are a set of Requests

Transactions (Requests) : are a set of messages to a service in the network
side.

User : The one who uses the DM? Application including external applications,
client machines, other engines, Grid, etc.

8.2 Acronyms

APIT : Application Programming Interface
ASP : Application Service Provider
ATF : DataGrid Architecture Task Force
CAE : Computer-Aided Engineering
CAN : Content-Addressable Networks (P2P)
CAS : Community Autorisation Service
CBIR : Content-Based Image Retrieval
CBVIR : Content-Based Visual Information Retrieval
CE : Computing Element (WP4)
CERT : X.509 CERTificate
ClassAd : Condor CLASSified ADvertisement language
CPU : Computing Processing Unit
CTN : Central Test Node

176

DAG : Directed Acyclic Graph (unicore)

DBMS : Data Base Management System

DM2 : Distributed Medical Data Manager

DICOM : Digital Image and COmmunication in Medicine
DS : Distributed System.

DSE : Distributed System Engine

EF : Ejection Fraction

FTP : File Transfer Protocol

GIS : Global Information Service

GIIS : Grid Index Information Service (globus)

GGPF : Global Grid Forum

GMA : Grid Monitoring Architecture

GPCALMA : Grid Platform for Computer Assisted Library for MAmmography
GRACE : Grid Architecture for Computational Economy (NIMROD-G)
GRIS : Grid Resource Information Service (globus)
GSI : Globus Security Infrastructure

GUI : Graphical User Interface

HEP : High-Energy Physics

HIS : Hospital Information System

HPC : High Performance Computing environment
HPSS : High Performance Storage System

HTTP : HyperText Transfer Protocol

HTC : High Throughput Computing environment
HSM : Hierarchical Storage Manager

IDL : Interface Description Language (legion)

IEEE : Institute of Electrical and Electronics Engineers
IINO : Ipc_In / Network Out processes

ITO : Ipc_In processes Only

ITIO : Ipc_In / Ipc_ Out processes

IPC : Inter Process Communication

JDL : Job Description Language

JSS : Job Submision Service

QUD : QUery Driver

LAN : Local Area Network

LB : Logging and Bookkeeping

LCAS : Local Centre Autorisation Service

LCMAPS : Local Credential MAPping Service

LDAP : Lightweight Directory Access Protocol [160]
LFN : Logical File Name

LHC : Large Hadron Collider

MDS : Metacomputing Directory Services (globus)
MPT : Message Passing Interface

MPK : Message Passing Kernel

MPP : Massively Parallel Processing

MSS : Mass Storage System

MSSRM : Mass Storage System Reference Model (IEEE)

177

NIIO : Network In/ Ipc_Out processes

NFS : Networked File System

OGSA : Open Grid Services Architecture
OGSI : Open Grid Services Infrastructure
PACS : Picture Archiving and Communication System
PCK : Package

PDC : Parallel and Distributed Computing
PFN : Physical File Name

PKI : Public Key Infrastructure

PVM : Parallel Virtual Machine

P2P : Peer to Peer

QoS : Quality of Service

QRSC : Query Retrieve Service Class - DICOM
RAID : Redundant Array of Inexpensive Disks
RB : Resource Broker

RC : Replica Catalog

RIS : Radiological Information Systems

RM : Replica Manager

RQD : ReQuest Driver

RSA : R. Rivest, A. Shamir, L. Adleman, Public-Key Encription System
SAN : Storage Area Network

SDA : Service DAemons

SDR : Service DRivers

SE : Storage Element

SDSC : San Diego Supercomputer Center
SMF : Standard Mammogram Form

SOA : Service Oriented Architecture

SOAP : Simple Object Access Protocol

SQL : Standard Query Language

SRB : Storage Resource Broker

SSD : UML System Sequence Diagram

SSL : Secure Sockets Layer

TCP Transport Communication Protocol
TFN : Transfer File Name

TKD : TasK Driver

TOD : TOol Driver

UI : User Interface

UML : Unified Modeling Language
UNICORE : UNiform Interface to COmputing REsources
VO : Virtual Organization

WAN : Wide Area Network

WDSL : Web Services Description Language
WMS : Workload Management System

WP : datagrid Work Package

WSRF : WS-Resource Framework

XML : eXtensible Markup Language

178

8.3 Definitions

Client :
An application program that establishes connections for the purpose of sending
requests.

Clusters :
They are, in some sense, the predecessors of the grid technology. Clusters intercon-
nect nodes through a local high-speed network, using commodity hardware, with
the aim at reducing the costs of such infrastructures. Supercomputers have been
replaced by cluster of workstations in a huge number of research projects, thus the
grid technology is the natural evolution of clusters.

Content-based Query :
A query which makes additional computation into an image. It uses methods that
automatically extract visual features such as colours, contours, and textures to des-
cribe and search images. Alternative search methods are usually text-based [34].

Distributed Computing :
A type of computing in which different components and objects of an application
can be located on different network connected computers. Any system where many
computers solve a problem together.

Engine :

The Webster’s dictionary [190] defines an engine as “something used to achieve a
purpose”. For example, in databases theory, it is the part of a database management
system (DBMS) that stores and retrieves data. In Web Computing, it is refereed to
search engines, and is a general class of programs that search documents for specified
keywords and return a list of the documents where the keywords were found. In these
examples, the concept of engine is used to search for data or information. We use the
term engine because we also search for data and information, but with additional
and specific characteristics : (i) huge quantity of data, (ii) data is stored as raw
data in image files and also as metadata in databases, (iii) to get information, a
computing process must be done (query by content).

Grid :

Some classical definitions :

— “Grid is a type of parallel and distributed system that enables the sharing, se-
lection, and aggregation of geographically distributed "autonomous" resources
dynamically at runtime depending on their availability, capability, perfor-
mance, cost, and users’ quality-of-service requirements” [159].

— “A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end compu-
tational capabilities” [8]

179

— “Grid is a networked computer resource sharing and coordinated problem sol-
ving in dynamic, multi-institutional virtual organizations” [5]

— “Grids are geographically distributed, heterogeneous collections of computing
resources that can be accessed through a single point of contact. They provide
computational power or access to data at scales beyond even the largest single
system” [174] [69] .

HTC vs HPC :
An environment which can provide [61] long period of time (weeks or months) of
computing power is classified as High Throughput Computing (HTC). In such en-
vironment there is a special interest in the sustained throughput and the number
of completed jobs, rather than the peak performance and the wall clock time. A
High Performance Computing (HPC) environment delivers tremendous power over
a short period of time and is highly dependent on the wall clock time.

Hybrid Query :
A query which needs to access metadata databases, access raw data images, and
make content-based retrieval.

Image Processing :
Analyzing and manipulating images with a computer; it is the application of signal
processing techniques to the domain of images.

Message Passing :
Message passing is a general term for a variety of strategies for structured interclient
communication. The required steps to send and receive messages are specific to the
technic.

Middleware :

A software layer that functions as a conversion or translation layer ; it’s a consolidator
and integrator which can encompass different architectures, operating systems, and
physical locations. This technology allows to connect networks, workstations, super-
computers and other computer resources together into a system that can encompass
different architectures, operating systems and physical locations [19]. Technologies
as Grids, Proxies and MSS have complex middleware components that allow them
to optimize resources usage and to offer additional services.

Picture Archiving and Communication System (PACS) :
It is an electronic system dedicated to medical image management. It enables the
following image cycle : production on imaging devices, archiving, transfer via network
and consultation, processing and softcopy reading on stations. PACS relies on the
DICOM standard for image representation and communication services [155].

Proxy : An intermediary program which acts as both a server and a client for
the purpose of making requests on behalf of other clients. The requests are serviced
internally or by passing them, with possible translation, on to other servers. A proxy
must interpret and, if necessary, rewrite a request message before forwarding it.

Server :

180

An application program that accepts connections in order to service requests by
sending back responses.

Service :
A Service is an independent application, with a known interface, and which performs
a work for their users. It includes data collection, conversion, and storage ; commu-
nication services; archive services such as catalog queries and data distribution ; and
control authority services such as registration and distribution certificates.

Transaction :
The execution of a program accessing shared data at multiple sites, which garanties
the ACID properties : atomic, consistent, isolated and durable. It’s a sequential
program that always execute to completion [1]

181

Chapitre 9

Annexes

“Tout le monde savait que c’était impossible. Puis vint un imbécile
qui ne le savait pas et qui l’a fait“, M. Pagnol

182

183

9.1 Annexe A : Machine configuration for an Engine
Server at INSA Lyon

Hospital Application
Port 7005 Port 7004

“"'--___\ I
M PK 8 Mach 15 I@ ‘
&)

Mach 1 Mach 34 Mach 45 Mach 30 Mach 2 Mach 6
UGRID
DICOM DICOM MYSQL MYSQL MYSQL
9 9
10 10

Port 7009

I P 195.220.108.25

Port 7009

Port 6901 to 6910 4\ V V

4\ Port 3306 Port 3306
o> D

IP127.00.1 CTN Port6021t04iOSO UGRID P}rlt3306
U

>

CTN
P 194.167.219.40

FiG. 9.1 - DM? Server Engine at INSA - Lyon

Port 1842

184

Comments

The figure 9.1 and the file configuration show a DM? Server used to test the DM?
(medical) applications and described in chapter 6.

the three MYSQL Request Drivers (RQD), compose a MYSQL Service Driver
(SDR)

the two DICOM Request Drivers (RQD), compose a DICOM Service Driver
(SDR)

the two DM? Query Drivers (QUD), compose a DM? Service Daemon (SDA)
There is an Image Tool composed by only one Image Tool Driver (TOD)
There is a Cache Tool composed by only one Cache Tool Driver (TOD). This
is a test only Tool, because the real one is being developed at LIRIS [149] by
another research team [187].

Each DICOM TKD has defined ten (10) copies, always means that it can
transfer (DICOM pull) up to 10 slices in parallel. It always contacts CTN at
the same port (here, the port 7009), and it receives DICOM slices by different
ports (i.g., 6901 to 6910, or 6021 to 6030).

The DM? Server database is local, and the DM? Client Database is remote.
A local CTN exists for simulating a second (local) hospital. Because of this,
there exists a local DM? Client Database also. Remember that an engine can
get in touch with many Databases.

The DM? Internal QUD (DM2 INT) is the one used for getting files and data
from the Hospital.

The second, DM? QUD (DM2 QUD), is used to get in touch with applications
that use the API layer 3.

For improving performance, we have define 8 copies of the Message Passing
Kernel (MPK).

Configuration File!

export
export
export
export
export
export
export
export
export
export
export
export
export
export

machNR_1=1
machACTIVE_FLAG_1=YES
machSTART_FLAG_1=YES
machNAME_1=HOSPITAL_gibbon
machIN_PORT_1=6901
machIP_1=195.220.108.25
machIP_NAME_1=gibbon
machPORT_1=7009
machTYPE_1=DICOM
machHOST_1=ANY_ONE
machUSER_1=ANY_ONE
machPASSWD_1=ANY_ONE
machDB_1=ANY_ONE
machNR_SLAVES_1=10

based on the Bash file : DSEM504-DM2SRV .gibbon.BASH

185

export machNR_2=2

export machACTIVE_FLAG_2=YES

export machSTART_FLAG_2=YES

export machNAME_2=MYSQL_CLI_RQD_gibbon
export machIN_PORT_2=ANY_ONE

export machIP_2=195.220.108.25

export machIP_NAME_2=gibbon

export machPORT_2=3306

export machTYPE_2=MYSQL_CLI_RQD

export machHOST_2=gibbon.creatis.insa-lyon.fr
export machUSER_2=hDSEM

export machPASSWD_2=hDSEM

export machDB_2=dm2_cl

export machNR_SLAVES_2=1

export machNR_4=4

export machACTIVE_FLAG_4=YES

export machSTART_FLAG_4=YES

export machNAME_4=LYON_INTERNAL_DM2_CELL
export machIN_PORT_4=7005

export machIP_4=0.0.0.0

export machIP_NAME_4=gibbon

export machPORT_4=ANY_ONE

export machTYPE_4=DM2_INTERNAL_TXDD
export machHOST_4=ANY_ONE

export machUSER_4=ANY_ONE

export machPASSWD_4=ANY_ONE

export machDB_4=ANY_ONE

export machNR_SLAVES_4=1

export machNR_6=6

export machACTIVE_FLAG_6=YES

export machSTART_FLAG_6=YES

export machNAME_6=MYSQL_CLI_RQD_HOSPITAL_dcmtkhd
export machIN_PORT_6=ANY_ONE

export machIP_6=194.167.219.40

export machIP_NAME_6=gibbon

export machPORT_6=3306

export machTYPE_6=MYSQL_CLI_RQD

export machHOST_6=creatis-dcmtkhd.univ-lyonl.fr
export machUSER_6=hDSEM

export machPASSWD_6=hDSEM

export machDB_6=dm2_cl

export machNR_SLAVES_6=1

186

export machNR_11=11

export machACTIVE_FLAG_11=YES
export machSTART_FLAG_11=YES
export machNAME_11=IMAGE_TOOLS
export machIN_PORT_11=ANY_ONE
export machIP_11=127.0.0.1
export machIP_NAME_11=gibbon
export machPORT_11=ANY_ONE
export machTYPE_11=IMAGE_TOD
export machHOST_11=ANY_ONE
export machUSER_11=ANY_ONE
export machPASSWD_11=ANY_ONE
export machDB_11=ANY_ONE
export machNR_SLAVES_11=2

export machNR_12=12

export machACTIVE_FLAG_12=YES
export machSTART_FLAG_12=YES
export machNAME_12=DICOM_TASK_DRIVER
export machIN_PORT_12=ANY_ONE
export machIP_12=127.0.0.1
export machIP_NAME_12=gibbon
export machPORT_12=ANY_ONE
export machTYPE_12=DICOM_TKD
export machHOST_12=ANY_ONE
export machUSER_12=ANY_ONE
export machPASSWD_12=ANY_ONE
export machDB_12=ANY_ONE
export machNR_SLAVES_12=2

export machNR_13=13

export machACTIVE_FLAG_13=YES
export machSTART_FLAG_13=YES
export machNAME_13=DATABASE_TASK_DRIVER
export machIN_PORT_13=ANY_ONE
export machIP_13=127.0.0.1
export machIP_NAME_13=gibbon
export machPORT_13=ANY_ONE
export machTYPE_13=DATABASE_TKD
export machHOST_13=ANY_ONE
export machUSER_13=ANY_ONE
export machPASSWD_13=ANY_ONE
export machDB_13=ANY_ONE

export machNR_SLAVES_13=1

export machNR_15=15

187

export machACTIVE_FLAG_15=YES
export machSTART_FLAG_15=YES
export machNAME_15=GRID_TASK_DRIVER
export machIN_PORT_15=ANY_ONE
export machIP_15=127.0.0.1
export machIP_NAME_15=gibbon
export machPORT_15=ANY_QONE
export machTYPE_15=GRID_TKD
export machHOST_15=ANY_ONE
export machUSER_15=ANY_ONE
export machPASSWD_15=ANY_ONE
export machDB_15=ANY_ONE
export machNR_SLAVES_15=1

export machNR_16=16

export machACTIVE_FLAG_16=YES
export machSTART_FLAG_16=YES
export machNAME_16=CACHE_ASYNC
export machIN_PORT_16=ANY_ONE
export machIP_16=127.0.0.1
export machIP_NAME_16=gibbon
export machPORT_16=ANY_ONE
export machTYPE_16=CACHE_TEST1
export machHOST_16=ANY_ONE
export machUSER_16=ANY_ONE
export machPASSWD_16=ANY_ONE
export machDB_16=ANY_ONE
export machNR_SLAVES_16=1

export machNR_30=30

export machACTIVE_FLAG_30=YES
export machSTART_FLAG_30=YES
export machNAME_30=MYSQL_SRV_RQD
export machIN_PORT_30=ANY_ONE
export machIP_30=195.220.108.25
export machIP_NAME_30=gibbon
export machPORT_30=3306

export machTYPE_30=MYSQL_SRV_RQD
export machHOST_30=gibbon.creatis.insa-lyon.fr
export machUSER_30=hDSEM

export machPASSWD_30=hDSEM
export machDB_30=dm2

export machNR_SLAVES_30=1

export machNR_34=34
export machACTIVE_FLAG_34=YES

188

export machSTART_FLAG_34=YES

export machNAME_34=HOSPITAL_dcmtkhd
export machIN_PORT_34=6021

export machIP_34=194.167.219.40
export machIP_NAME_34=creatis-dcmtkhd
export machPORT_34=7009

export machTYPE_34=DICOM

export machHOST_34=ANY_ONE

export machUSER_34=ANY_ONE

export machPASSWD_34=ANY_ONE

export machDB_34=ANY_ONE

export machNR_SLAVES_34=10

export machNR_45=45

export machACTIVE_FLAG_45=YES
export machSTART_FLAG_45=YES

export machNAME_45=UGRID_farmanager
export machIN_PORT_45=ANY_ONE
export machIP_45=ANY_ONE

export machIP_NAME_45=gibbon

export machPORT_45=1842

export machTYPE_45=UGRID_RQD

export machHOST_45=gibbon.creatis.insa-lyon.fr
export machUSER_45=ANY_QONE

export machPASSWD_45=user

export machDB_45=ANY_ONE

export machNR_SLAVES_45=1

export machNR_46=46

export machACTIVE_FLAG_46=YES
export machSTART_FLAG_46=YES
export machNAME_46=DM2_SERVER_TXDD
export machIN_PORT_46=7004

export machIP_46=0.0.0.0

export machIP_NAME_46=gibbon
export machPORT_46=ANY_ONE

export machTYPE_46=DM2_SERVER_TXDD
export machHOST_46=ANY_ONE

export machUSER_46=ANY_QONE

export machPASSWD_46=ANY_ONE
export machDB_46=ANY_ONE

export machNR_SLAVES_46=1

lastActiveMACHINE_NUMBER=last(machNR + 1)
export lastActiveMACHINE_NUMBER=47

189

export mpkNR=8

190

9.2 Annexe B : Machine configuration for an Engine
Client at Cardiological Hospital of Lyon

DCMTK

\1I\1I \1/ DM2 commands

I I
! i
MONITOR I

é' Mach 33 |
i
i MPK 1 :

1 MPK 2
i
! i
! i
! i

IP194.167.219.40 = Mach 35 Mach 6
RQD LI_RQD,
9
10
Port 7005
Port 3306
1P 127.0.0.1 \y\y \y
DM?2
I P 195.220.108.25 SRV

F1G. 9.2 — DM? Client Engine at Cardiological Hospital - Lyon

191

Comments

The figure 9.2 and the file configuration shows a DM? Client which was installed
at the Cardiological Hospital of Lyon. It deals with capture of images from the IRM
and DICOM scanners, as described in chapter 6.

— a low level tool driver (TOD, machine 33) was developed in order to see the

behavior of the Client Engine when transferring files to the server.

— The transfer of metadata between the client engine and the server engine is

done in parallel.

— We have defined only two copies of the Message Passing Kernel (MPK).

Configuration File?

export machNR_6=6

export machACTIVE_FLAG_6=YES

export machSTART_FLAG_6=YES

export machNAME_6=MYSQL_CLI_RQD_HOSPITAL_dcmtkhd
export machIN_PORT_6=ANY_ONE

export machIP_6=194.167.219.40

export machIP_NAME_6=gibbon

export machPORT_6=3306

export machTYPE_6=MYSQL_CLI_RQD

export machHOST_6=creatis-dcmtkhd.univ-lyonl.fr
export machUSER_6=hDSEM

export machPASSWD_6=hDSEM

export machDB_6=dm2_cl

export machNR_SLAVES_6=1

export machNR_17=17

export machACTIVE_FLAG_17=YES

export machSTART_FLAG_17=N0

export machNAME_17=MONITOR

export machIN_PORT_17=NO_ONE

export machIP_17=127.0.0.1

export machIP_NAME_17=creatis-dcmtkhd
export machPORT_17=NO_ONE

export machTYPE_17=hDSEM_MONITOR_TOD
export machNR_SLAVES_17=1

export machNR_33=33

export machACTIVE_FLAG_33=YES
export machSTART_FLAG_33=YES
export machNAME_33=ECHO_TOD
export machIN_PORT_33=NO_ONE
export machIP_33=127.0.0.1

2bhased on the Bash file : DSEM504-DM2CLI.dcmtkhd . BASH

192

export
export
export
export

export
export
export
export
export
export
export
export
export
export

machIP_NAME_33=dhcp-4
machPORT_33=N0O_ONE
machTYPE_33=ECHO_TOD
machNR_SLAVES_33=1

machNR_35=35

machACTIVE_FLAG_35=YES
machSTART_FLAG_35=YES
machNAME_35=T0____REMOTE_INTERNAL_DM2_CELL
machIN_PORT_35=N0_ONE
machIP_35=195.220.108.25
machIP_NAME_35=creatis-dcmtkhd
machPORT_35=7005

machTYPE_35=DM2_RQD

machNR_SLAVES_35=10

lastActiveMACHINE_NUMBER=last(machNR + 1)

export

export

lastActiveMACHINE_NUMBER=37

mpkNR=2

193

9.3 Annexe C : Access to DCMTK and CTN at
Cardiological Hospital of Lyon

P

Wy by

1P 194.167.219.40

Port 7013

= [DCMTK
CTN |portron —

-
PUSH DICOM

vv DM2 commands

(No port required for a line command)

| = | -
O~ DM2 I

| CLI I ; M

I |

&
Port 7009

W !
1P 194.167.219.40
v V IP 195.220.108.25
Port 7005
[O | —
O~ DM2 =
! SRV | = m
| |
O @)
PULL DICOM ?
< Yy
Ports 6001 to 6009
% i
1P 195.220.108.25

F1G. 9.3 — Access to DCMTK and CTN at Cardiological Hospital - Lyon

194

Comments

The figure 9.3 shows details of pushing DICOM files to a DCMTK, CTN and
DM? at the Cardiological Hospital of Lyon.

— The DM? Server Engine makes PULL in parallel of the DICOM slices by using
up to 10 ports. These ports must be defined in CTN and also in DM? (see
annexe A for definition in DM?)

— It represents only one Hospital, but it could be also seen as many hospitals,
simultaneously connected to a DM? Server Engine.

Starts CTN and offers port 7009

/opt/ctn/bin/archive_server 7009 >>/tmp/ctn.log 2>&1&
Starts DCMTK and offers port 7013

$DCMTK_HOME/storescp -xcr "${DM2_HOME}/bin/storeSCP_SEQ_file #p #f"
-xcs "/usr/local/hDSEM/bin/storeSCP_ANALIZE_SEQ_BY_SERIES #p -algo 003
-last_put" -ss "irm_7013/img" -tos 5 7013&

195

9.4 Annexe D : Machine configuration for a High
Performance Engine Server at INSA of Lyon

Hospital Application
IP 195.220.108.25 Port 7005 Port 7004

|
: :
i
I Mach 4 Mach 46
E Mach 11 Mach12 <——1
i
I MPK 1 -
E ach 16 MPK 2 Mach 13

. i
I M PK 8 Mach 15 _— @
i
' 1
= Mach 21 Mach 22 Mach 23 Mach 24 Mach45 Mach 30 Mach 25 Mach 26 Mach 27 Mach 28
O 0 O 0O O O 0,0
1 1 1 1 UGRID yvysoL 1 1 1 1
! SRV,
DICOM DICOM DICOM DICOM i : DICOM DICOM DICOM DICOM
RQD RQD RQD RQD ; ! RQD RQD RQD RQD
M VA A VA N AR VA T
H 1
voty Ty Ty s Ty Ty Ty Ty
i !
Port 7009 Port 7009 Port 7009 Port 7009 | l Port 7009 Port 7009 Port 7009 Port 7009
i
H 1
1P 127.0.0.1 ! :
! i
1 H
H 1
i !

4\ 4\ 4\F)ULLDH;OM POYSBOG PULL DICOM /% /% 4\
/% i p 4\ A e ™ A A tal /%

Port 6201 to 6210 Port 6701 to 6710
Port 6301 to 6310 UGRID Port 6601 to 6610
Port 6401 to 6410 Port 6501 to 6510

CTN | | CTN CTN| |CTN CTN| |[CTN| [CTN||CTN

IP 134.214.205.19 P 134.214.205.21 IP 134.214.205.23 IP 134.214.205.25
1P 134.214.205.20 1P 134.214.205.22 IP 134.214.205.24

F1G. 9.4 — DM? High Performance Server Engine at INSA - Lyon

196

1P 134.214.205.26

Comments

The figure 9.4 and the file configuration show a DM? High Performance Engine
which was installed at Creatis INSA of Lyon for testing stressing conditions in the
engine. The experiments consider parallel access over 8 CTN remote servers which
represent hospitals attached to the same DM? Server Engine. The experiment is
described in chapter 5.

— The configuration for TOD (machines 11, 16), TKD (machines 12, 13, 15),
QUD (machines 4, 46), and RQD (machines 30, 45), is the same as it was sho-
wed in annexe A. The configuration file below includes the additional machines
(21 to 28).

Hardware and Software

We used a Cluster of 8 PC with processor speed of 1GHz per processor, and
memory of 1GB. In the server engine, there were installed hard disks udma5 ATA

(locally) and IDE RAID (remotely). The network speed was 100Mbits. The clus-
ter was running with :

Linux RedHat 7.3

CTN version 2.11.0
DCMTK version 3.52
PVM version 3.4.4

Complement Configuration File

export machNR_21=21

export machACTIVE_FLAG_21=YES
export machSTART_FLAG_21=YES
export machNAME_21=HOSPITAL_frodo
export machIN_PORT_21=6101
export machIP_21=134.214.205.19
export machIP_NAME_21=frodo
export machPORT_21=7009

export machTYPE_21=DICOM

export machHOST_21=ANY_ONE
export machUSER_21=ANY_ONE
export machPASSWD_21=ANY_ONE
export machDB_21=ANY_ONE

export machNR_SLAVES_21=10

export machNR_22=22

export machACTIVE_FLAG_22=YES
export machSTART_FLAG_22=YES
export machNAME_22=HOSPITAL_merry

197

export machIN_PORT_22=6201
export machIP_22=134.214.205.20
export machIP_NAME_22=merry
export machPORT_22=7009

export machTYPE_22=DICOM

export machHOST_22=ANY_ONE
export machUSER_22=ANY_QONE
export machPASSWD_22=ANY_ONE
export machDB_22=ANY_ONE

export machNR_SLAVES_22=10

export machNR_23=23

export machACTIVE_FLAG_23=YES
export machSTART_FLAG_23=YES
export machNAME_23=HOSPITAL_pippin
export machIN_PORT_23=6301
export machIP_23=134.214.205.21
export machIP_NAME_23=pippin
export machPORT_23=7009

export machTYPE_23=DICOM

export machHOST_23=ANY_ONE
export machUSER_23=ANY_QONE
export machPASSWD_23=ANY_ONE
export machDB_23=ANY_ONE

export machNR_SLAVES_23=10

export machNR_24=24

export machACTIVE_FLAG_24=YES
export machSTART_FLAG_24=YES
export machNAME_24=HOSPITAL_sam
export machIN_PORT_24=6401
export machIP_24=134.214.205.22
export machIP_NAME_24=sam
export machPORT_24=7009

export machTYPE_24=DICOM

export machHOST_24=ANY_ONE
export machUSER_24=ANY_ONE
export machPASSWD_24=ANY_ONE
export machDB_24=ANY_ONE

export machNR_SLAVES_24=10

export machNR_25=25

export machACTIVE_FLAG_25=YES
export machSTART_FLAG_25=YES

export machNAME_25=HOSPITAL_legolas
export machIN_PORT_25=6501

198

export machIP_25=134.214.205.23
export machIP_NAME_25=legolas
export machPORT_25=7009

export machTYPE_25=DICOM

export machHOST_25=ANY_ONE
export machUSER_25=ANY_ONE
export machPASSWD_25=ANY_ONE
export machDB_25=ANY_ONE

export machNR_SLAVES_25=10

export machNR_26=26

export machACTIVE_FLAG_26=YES
export machSTART_FLAG_26=YES
export machNAME_26=HOSPITAL_gimli
export machIN_PORT_26=6601
export machIP_26=134.214.205.24
export machIP_NAME_26=gimli
export machPORT_26=7009

export machTYPE_26=DICOM

export machHOST_26=ANY_ONE
export machUSER_26=ANY_ONE
export machPASSWD_26=ANY_ONE
export machDB_26=ANY_ONE

export machNR_SLAVES_26=10

export machNR_27=27

export machACTIVE_FLAG_27=YES
export machSTART_FLAG_27=YES
export machNAME_27=HOSPITAL_boromir
export machIN_PORT_27=6701
export machIP_27=134.214.205.25
export machIP_NAME_27=boromir
export machPORT_27=7009

export machTYPE_27=DICOM

export machHOST_27=ANY_ONE
export machUSER_27=ANY_ONE
export machPASSWD_27=ANY_ONE
export machDB_27=ANY_ONE

export machNR_SLAVES_27=10

export machNR_28=28

export machACTIVE_FLAG_28=YES
export machSTART_FLAG_28=YES

export machNAME_28=HOSPITAL_aragorn
export machIN_PORT_28=6801

export machIP_28=134.214.205.26

199

export
export
export
export
export
export
export
export

export

machIP_NAME_28=aragorn
machPORT_28=7009
machTYPE_28=DICOM
machHOST_28=ANY_ONE
machUSER_28=ANY_ONE
machPASSWD_28=ANY_ONE
machDB_28=ANY_ONE
machNR_SLAVES_28=10

mpkNR=8

200

9.5 Annexe E : Server Database Description

/1:1/ grid 7

rinSegl mage2l mage

:;i dicomimg 7

e T nonDicoml mg

rInSegl mage2l mage

dm2Seql mage

rInSeql mage2$eql mageSource

algorithm LN parameters

algorithmList
1:N

\ .

protocol protocol ExtraData

algorithmListiD

F1G. 9.5 - DM? Server Database : entity-relationship diagrams [97] [96]

201

mysql> show tables;
| Tables_in_dm2 |

algorithm

algorithmList

dicomImg |
dm2SeqImage |
grid |
nonDicomImg

parameters

protocol

protocolExtraData |
rinAlgo2AlgoList |
rlnSeqImage2Image |
rlnSeqImage2SeqImageSource |

12 rows in set (0.00 sec)

| algorithm | CREATE TABLE ‘algorithm‘ (
‘algorithm‘ char(64) NOT NULL default ’’,
‘algorithmName‘ char(128) default NULL,
PRIMARY KEY (‘algorithm‘)

) TYPE=MyISAM |

| algorithmList | CREATE TABLE ‘algorithmList‘ (
‘algorithmListID¢ char(64) NOT NULL default °’’,
‘algorithmListName‘ char(128) default NULL,
PRIMARY KEY (‘algorithmListID)

) TYPE=MyISAM |

| dicomImg | CREATE TABLE ‘dicomImg‘ (
‘SOPInsUID¢ char(64) NOT NULL default ’°,
‘SerInsUID¢ char(64) default NULL,
‘StuInsUID¢ char(64) default NULL,
‘fileSize¢ int(10) unsigned default NULL,
‘insertDate‘ date default NULL,
‘insertTime‘ time default NULL,
‘Mod¢ char(16) default NULL,
PRIMARY KEY (‘SOPInsUID¢)

) TYPE=MyISAM |

202

| dm2SeqImage | CREATE TABLE ‘dm2SeqImage‘ (
‘dm2ID¢ varchar(64) NOT NULL default ’’,
‘kind¢ enum(’DICOM’,’NODICOM’) default NULL,
‘nx‘ int(10) unsigned default NULL,
‘ny¢ int(10) unsigned default NULL,
‘nz¢ int(10) unsigned default NULL,
‘nt‘ int(10) unsigned default NULL,

sx¢ float default NULL,

sy‘ float default NULL,
‘sz¢ float default NULL,
‘st¢ float default NULL,
‘vdim¢ int(10) unsigned default NULL,
‘type‘ enum(’8bits’,’u8bits’,’16bits’,’ul6bits’,’32bits’,

’u32bits’,’float’,’double’) default NULL,
‘insertDate‘ date default NULL,
‘insertTime‘ time default NULL,
‘hostName‘ varchar(64) NOT NULL default °°’,
‘userID¢ varchar(64) NOT NULL default ’’,
‘imageSize‘ int(10) unsigned default NULL,
PRIMARY KEY (‘dm2ID¢)

) TYPE=MyISAM |

| grid | CREATE TABLE ‘grid‘ (
‘gridFile‘ varchar(255) NOT NULL default ’°,
‘dm2ID¢ varchar(64) NOT NULL default ’’,
‘fileKind‘ enum(’DCM’,’PNG’,’JPG’,’INR’,’VOL’) default NULL,
PRIMARY KEY (‘gridFile‘, ‘dm2ID¢)
) TYPE=MyISAM |

| nonDicomImg | CREATE TABLE ‘nonDicomImg‘ (
‘fileID¢ char(64) NOT NULL default ’’,
‘fileName‘ char(255) NOT NULL default °’°’,
‘fileSize¢ int(10) unsigned default NULL,
‘insertDate‘ date default NULL,
‘insertTime‘ time default NULL,
PRIMARY KEY (‘fileID*)

) TYPE=MyISAM |

| parameters | CREATE TABLE ‘parameters‘ (
‘algorithm‘ char(64) NOT NULL default ’’,
‘parameterNumber‘ int(4) default NULL,

203

‘parameter‘ char(64) NOT NULL default ’°°
TYPE=MyISAM |

protocol | CREATE TABLE ‘protocol‘ (
‘protocol® varchar(64) NOT NULL default ’’,
‘protocolName‘ varchar(128) default NULL,
‘dm2IDSource‘ varchar(64) NOT NULL default ’’,
PRIMARY KEY (‘protocol®)

TYPE=MyISAM |

protocolExtraData | CREATE TABLE ‘protocolExtraData‘ (
‘protocol® varchar(64) NOT NULL default ’’,
‘tableName‘ varchar(255) default NULL,

‘externalDB¢ varchar(16) NOT NULL default ’’,
‘metaDataFileName® varchar(255) NOT NULL default ’°
TYPE=MyISAM |

rlnAlgo2AlgoList | CREATE TABLE ‘rlnAlgo2AlgolList® (
‘algorithmListID‘ char(64) NOT NULL default ’’,
‘algorithm‘ char(64) NOT NULL default ’°

TYPE=MyISAM |

rlnSeqImage2Image | CREATE TABLE ‘rlnSeqImage2Image‘ (
‘dm2ID¢ char(64) NOT NULL default ’’,

‘fileID¢ char(64) NOT NULL default ’’,
‘imageSequenceNumber‘ int(4) unsigned default NULL,
PRIMARY KEY (‘dm2ID‘,‘fileID¢)

TYPE=MyISAM |

rlnSeqImage2SeqImageSource | CREATE TABLE ‘rlnSeqImage2SeqImageSource‘ (
‘dm2ID¢ char(64) NOT NULL default ’’,

‘dm2IDSource‘ char(64) NOT NULL default °°’,

‘algorithm‘ char(64) NOT NULL default ’’,

PRIMARY KEY (‘dm2ID‘, ‘dm2IDSource*)

TYPE=MyISAM |

204

9.6 Annexe F : Client Database Description

patient

medical

algoList2Apply

radiologist
I ——

F1G. 9.6 - DM? Client Database : entity-relationship diagrams [97] [96]

mysql> show tables;

O +
| Tables_in_dm2_cl |
O +
| algoList2Apply |
| medical |
| patient |
S +

3 rows in set (0.00 sec)

| algoList2Apply | CREATE TABLE ‘algoList2Apply‘ (
‘region‘ enum(’HEAD’,’THORAX’,’ABDOMEN’,’COEUR’) NOT NULL default ’HEAD’,

‘radiologist‘ varchar(128) NOT NULL default °’’,
‘algorithmListID¢ varchar(64) NOT NULL default °’’,
PRIMARY KEY (‘region‘,‘radiologist®)

) TYPE=MyISAM |

| medical | CREATE TABLE ‘medical® (

205

‘dm2ID‘ varchar(64) NOT NULL default ’’,
‘Mod¢ enum(’MR’,’US’,’CT’,’PET’,’SPECT’,’US’,’0THER’) default NULL,
‘region‘ enum(’HEAD’,’THORAX’,’ABDOMEN’,’COEUR’,’0THER’) default NULL,
‘hospital® varchar(128) default NULL,
‘department‘ varchar(128) default NULL,
‘radiologist‘ varchar(128) default NULL,
‘insertDate‘ date default NULL,
‘insertTime‘ time default NULL,
‘imager‘ varchar(128) default NULL,
‘parameters‘ varchar(255) default NULL,
‘annotation‘ blob,
PRIMARY KEY (‘dm2ID)
) TYPE=MyISAM |

| patient | CREATE TABLE ‘patient‘ (
‘dm2ID¢ char(64) NOT NULL default ’°,
‘PatID¢ char(64) default NULL,
‘name‘ char(128) default NULL,
‘sexe‘ enum(’M’,’F’) default NULL,
‘dob‘ date default NULL,
PRIMARY KEY (‘dm2ID¢)

) TYPE=MyISAM |

206

9.7 Annexe G : Links to the Documentation

The author :

Hector DUQUE
http://hectorduque.free.fr
duque@creatis.insa-1lyon.fr

The team :

http://hectorduque.free.fr/recherche/tdTeam.html

The APIO documentation :

http://hectorduque.free.fr/recherche/htmlAPI0/index.html

The API3 documentation :

http://hectorduque.free.fr/recherche/html1API3/index.html

All the source code for DSEM/DM? :

http://hduque.free.fr/hDSEM/

Papers :

http://hectorduque.free.fr/recherche/tdPapers.html

This thesis document :

http://hectorduque.free.fr/thesis/

207

Chapitre 10

Application’s Annexes

“The Grid is a solution looking for a problem”, Jennifer M. Schopf,
Argonne National Lab, USA, 2002

208

209

10.1 Annexe I : Similarity

Several similarity measurements have been implemented in our application. Let
I represents the source image and .J represents one target image with the same
support (both I and J have n voxels). Let 7 denotes the gray level intensity of voxels
in image I and j denotes the the gray level intensity of voxels in image J. n; (resp.
n;) is the number of voxels with intensity ¢ (resp. j) in image I (resp. J). n;; is the
number of voxels having simultaneously intensity ¢ in image I and j in image J.
pi = and p; = 2 are associated probabilities. p;; = “ is the joint probability of
a voxel at a given location to have intensity ¢ in / and j in J. The mean and variance
of intensities in image I can be computed as : m; =Y, ip; and o7 = > _.(i — my)*p;.
From these statistical measurements, one can compute several similarity measures :

— The simple differences :

ZZPU‘Z jland Dy(I,J) = ZZp” i—j)? (10.1)

They are simple measurements for mono-modal image comparisons. They are
sensitive to signal noise and inhomogeneities so their principal interest is their
simplicity.

— The coefficient of correlation :

it is a normalized measurement taking into account an affine transformation
between I and .J intensities. It has been extensively used in the literature.

— The Wood’s criterion :

pzj

10.3
mJ\i)Qpij ()

W(I,7) =Y 2y, with { 2 '__fgj(

5 | o115

it was introduced to register MRI on PET images. Given the set of voxels with
intensity ¢ in the source image, the Wood’s criterion measures the variation of
intensities of corresponding voxels in the target image.

210

— The correlation ratio :

1
P) =1~ s > P07 (10.4)
I .
J

it is used for multi-modal registration and makes the hypothesis that a func-
tional relation exists between the source and the target image intensities.

— The mutual information, or entropy :

H(I,J) = —Zzpij% (10.5)

i

it is the most general similarity measure. It measures the entropy of the joint
gray levels distribution without any assumption on an existing relation between
source and target image intensities.

Acknowledgments

This annexe was entirely taken from the paper[44] :

J. Montagnat and H. Duque and J-M Pierson and V. Breton and L. Brunie
and I.E. Magnin, Medical Image Content-Based Queries using the Grid,
HealthGrid, 2002

211

10.2 Annexe II : 3D+time Segmentation of Magne-
tic Resonance Cardiac images

Accurate analysis of the cardiac function relies on tomographic image acquisi-
tions. Current cardiac examination in MRI comprises dynamic short axis acquisitions
at several slices that cover the whole heart.

The analysis of the cardiac function relies on quantitative global parameters
such as the volume evolution of the left ventricular cavity, the ejection fraction,
as well as local parameters such as the wall thickening. The estimation of these
parameters requires the extraction of the heart contours which is a very tedious and
user dependent task. Therefore, computer-assisted image processing methods are
required. As in the previous example, the goal of a grid-enabled method is quasi-real
time processing, in order to make the tool usable in a clinical context .

In order to ease the contour extraction process from the images, the so-called
deformable model approach uses an a priori model of the object to be extracted.
This model is deformed iteratively to fit the image content. The proposed model pre-
sents the advantage of allowing the simultaneous extraction of both the endocardial
and epicardial surfaces [117, 118]. The concept, named elastic deformable template,
combines a topological and geometric model of the object to be segmented, and a
constitutive equation (linear elasticity) defining its behavior under applied exter-
nal image forces that pushes the model interfaces towards the image edges. In this
context, the a priori model is a bi-cavity geometrical mesh that results from the
manual segmentation of a reference data set.

The equilibrium of the model is obtained through the minimization of a global
energy functional : E = Eggstic + Egata Where Egqgc represents the deformation
energy of the model and Ey4, is the energy due to the external image forces.

Internal Energy term The object is considered as a linear elastic body. Its elastic
energy can be expressed as :

1
Eeiastic = 5/ o'e d (106)
Q

Where o, € are the 3D strain and deformation vectors, respectively and 2 is
the model domain. Moreover, the material is considered as isotropic and is
completely defined by the Young modulus Y and the Poisson coefficient v.
Then, with the small displacement assumption,

Egaurie (1) = % /Q (Su)'D(Su) d9 (10.7)

where S is a differential operator, D(Y, v) is the elasticity matrix and u the
displacement vector.

External Image Energy The object is submitted to a 3D boundary force field t.
The expression of the external energy Fyu, is :

g (1) = /F (b.u) dT (10.8)

212

with I" the border of the object domain 2. The force field is either derived
from the gradient of a potential function P (such that t = —grad(P)) com-
puted from an edge map, or a specific force field called gradient vector flow
(GVF) [119] which is sometimes more efficient regarding the initialization and
the convergence to edges.

Global energy minimization The model is decomposed into tetrahedral elements.
The segmentation is obtained through the minimization of the global energy
functional E :

Bl) = /Q (Su)'D(Su) d2 — cx / (6.u) dT (10.9)

T

which is achieved using the Finite Element Method (FEM) [120].

Template initialization The segmentation procedure requires a rough positioning
of the initial template into the data. This is performed by an affine registration
of the model with a Volume of Interest (VOI), centered on the heart region
and extracted from an isotropic interpolated volume data.

The geometrical mesh is typically composed of about 6000 nodes and 25000 cells.
The system handled for the problem solving is therefore of size 324MFloats ([3 x
NumberOfNodes?). The program uses the Petsc library for linear algebra operations.
Once the segmentation has been performed on the first frame of the sequence, the
resulting model is used as the initial template for the next frame. If the sequence
has 30 frames, then segmentation is repeated 30 times.

Acknowledgments

This annexe was taken from the thesis [95] paper[116] described below :

V. Breton, P. Clarysse, Y. Germain, E. Jannot, Y. Legre, C. Loomis, J. Monta-
gnat, J-M Moureauz, A. Osorio, X. Pennec and R. Texier, Grid-enabling medical
images analysis, 2005

213

Chapitre 11

Bibliography

11.1 References

[1]
2]

3]

4]

[5]

[6]

7]

18]

S. Mullender, ed., Distributed Systems. New York : Addison Wesley, pp. 18-22,
1993.

Ion. Stoika and Robert. Morris and David. Liben-Nowell and David. Karger
and M. Frans. Kaashoek, “Chord : A scalable peer-to-peer lookup service for
internet applications,” tech. rep., MIT Laboratory for Computer Science, pp.
1-12, january 2002.

Frank. Dabek and Emma. Brunskill and M. Frans. Kaashoek and David. Kar-
ger and Robert. Morris and Ion. Stoika, “Building peer-to-peer systems with
chord, a distributed lookup service,” in 8th IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VIII), pp. 1-6, may 2001.

Karl Czajkowski and Tan Foster and Nick Karonis and Carl Kesselman and
Stuart Martin and Warren Smith and Steven Tuecke, “A resource management

architecture for metacomputing systems,” Lecture Notes in Computer Science,
vol. 1459, p. 62, 1998.

Foster, I. and Kesselman, C. and Tuecke, S., “The Anatomy of the Grid :
Enabling Scalable Virtual Organizations,” International Journal of Supercom-
puter Applications, vol. 15, no. 3, pp. 1-25, 2001.

Chervenak, A. and Foster, I. and Kesselman, C. and Salisbury, C. and Tuecke,
S., “The data grid : Towards an architecture for the distributed management
and analysis of large scientific datasets,” Journal of Network and Computer
Applications, vol. 23, pp. 187-200, July 2000.

Stockinger, H. and Samar, A. and Allcock, B. and Foster, I. and Holtman,
K. and Tierney, B., “File and object replication in data grids,” in 10th IEEFE
Symposium on High Performance and Distributed Computing (HPDC2001),
(San Francisco, California, USA), aug 2001.

Ian. Foster and Carl. Kesselman, The Grid : Blueprint for a New Computing
Infrastructure. San Fransisco, CA, USA : Morgan-Kaufmann Publishers, Inc,
pp. 1567-177, July 1998.

214

[9] Ian. Foster and Carl. Kesselman, The Grid 2 : Blueprint for a New Computing
Infrastructure. San Fransisco, CA, USA : Morgan-Kaufmann Publishers, Inc,
2 ed., 2003.

[10] Tan. Foster and Carl. Kesselman and G. Tsudik and S. Tuecke, “A security
architecture for computational grids,” in Fith ACM Conference on computers
and Communications Security, (New York), november 1998.

[11] 1. Foster and C. Kesselman and J. Nick and S. Tuecke", “The physiology of the
grid : An open grid services architecture for distributed systems integration,”
2002.

[12] Ian Foster and Carl Kesselman, The Grid : Blueprint for a New Computing
Infrastructure. San Fransisco, CA, USA : Morgan Kaufmann, July 1998.

[13] Francesco Giacomini and Francesco Prelz and Massimo Sgaravatto and Igor
Terekhov and Gabriele Garzoglio and Todd Tannenbaum, “Planning on the
grid : A status report. ppdg-20, particle physics data grid collaboration.,”
October 2002.

[14] Tan Foster and Carl Kesselman, “Globus : A metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and High
Performance Computing, vol. 11, pp. 115-128, Summer 1997.

[15] Andrew S. Grimshaw and William A. Wulf and James C. French and Alfred C.
Weaver and Paul Reynolds, “Legion : The next logical step toward a nationwide
virtual computer,” tech. rep., University of Virginia, 1994.

[16] Rajkumar Buyya, Economic based Distributed Resource Management and
Scheduling for Grid Computing. PhD thesis, Monash University, Melbourne,
Australia, April 12 2002.

[17] I. Foster and J. Geisler and S. Tuecke, “MPI on the I-WAY : A wide-area,
multimethod implementation of the Message Passing Interface,” pp. 10-17,
IEEE Computer Society Press, 1996.

[18] Ian Foster and Adriana Iamnitchi, “On Death, taxes and the convergence of
Peer-to-Peer and Grid Computing,” in 2nd International Workshop on Peer-
to-Peer Systems, IPTPS03, (Berkeley, CA, USA.), NSF, 20-21 February 2003.

[19] DataGrid, “Data access and file systems : State of the art report,” february
8th 2002. DataGrid WP2.

[20] DataGrid, “Final report,” february 10th 2004. DataGrid WP2.

|21] DataGrid, “Final report including report on the second bio-testbed release,”
january 27th 2004. DataGrid WP10.

[22] DataGrid, “Review of current technologies,” february 2002. DataGrid WP5.

|23] Acharya, R. and Wasserman, R. and Sevens, J. and Hinojosa, C., “Biomedical
Imaging Modalities : a Tutorial,” Comput Med Imaging Graph (cmig), vol. 19,
no. 1, pp. 3-25, 1995.

[24] Breton, V. and Medina, R. and Montagnat, J., “DataGrid, Prototype of a
Biomedical Grid,” Methods MIMST, vol. 42, no. 2, 2003. Also available as
http://www.methods-online.com/zs/startz.asp.

215

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Huang, H. K., PACS : Picture Archiving and Communication Systems in Bio-
medical Imaging. Berlin : Springer, 1996.

Montagnat, J. and Davila, E. and Magnin, L.E., “3D objects visualization for
remote interactive medical applications,” in 8D Data Processing, Visualization,
Transmission, (Padova, Italy), jun 2002.

Roche, A. and Malandain, G. and Pennec, X. and Ayache, N., “The Correla-
tion Ratio as a New Similarity Measure for Multimodal Image Registration,”
in Medical Image Computing and Computer-Assisted Intervention (MICCAI),
vol. 1496 of LNCS, pp. 1115-1124, oct 1998.

Penney, G.P. and Weese, J. and Little, J.A. and Desmedt, P. and Hill, D.L.G.
and Hawkes, D.J., “A Comparison of Similarity Measures for Use in 2D-3D

Medical Image Registration,” in Medical Image Computing and Computer-
Assisted Intervention (MICCAI), vol. 1496 of LNCS, pp. 1153-1161, oct 1998.

Richard McClatchey and Predrag Buncic and David Manset and Tamas Hauer
and Florida Estrella and Pablo Saiz and Dmitri Rogulin, “The mammogrid
project grids architecture,” in Computing in High Energy and Nuclear Physics
(CHEPO03), (La Jolla, CA, USA), p. 6 pages, Marc 2003.

Cecile Germain-Renaud and Romain Texier and Angel Osorio, “Interactive
exploration of medical images on the grid,” in HealthGrid, (Clermont-Ferrand),
HealthGrid, january 29th - 30th 2004.

Sharon Lloyd and Marina Jirotka and Andrew Simpson and David Gavaghan
and Ralph Highnam and David Watson and Mike Brady, “Digital mammogra-
phy : A world without film,” in HealthGrid, (Clermont-Ferrand), HealthGrid,
january 29th - 30th 2004.

Richard McClatchey and Florida Estrella and Chiara del Frate and Tamas
Hauer, “Resolving clinicians queries across a grids infrastructure,” in Health-
Grid, (Clermont-Ferrand), HealthGrid, january 29th - 30th 2004.

J.M. Alonso and V. Hernandez and G. Molto, “High performance cardiac tis-
sue electrical activity simulation on a parallel environment,” in HealthGrid,
(Clermont-Ferrand), HealthGrid, january 29th - 30th 2004.

Henning Muller and Arnaud Garcia and Jean-Paul Valle and Antoine Geiss-
buhler, “Grid computing at the university hospitals of geneva,” in HealthGrid,
(Lyon), HealthGrid, january 16th - 17th 2003.

G. Geist and J. Kohl and P. Papadopoulos, “PVM and MPI : a Comparison
of Features,” Calculateurs Paralleles, vol. 8, no. 2, pp. 137-150, 1996.

Al. Geist and Adam. Beguelin and Jack.Dongarra and Weicheng. JIANG and
Robert. MANCHEK and Vaidy. SUNDERAM, PVM : Parallel Virtual Ma-
chine ; Users’ Guide and Tutorial for Networked Parallel Computing. The MIT
Press, Cambridge, Massachusetts, 1994.

Brian Barrett and Jeff Squyres and Andrew Lumsdaine, “Integration of the
LAM/MPI environment and the PBS scheduling system,” in Proceedings, 17th
Annual International Symposium on High Performance Computing Systems
and Applications, (Quebec, Canada), May 2003.

216

[38]

[39]

[40]

[41]

|42]

|43]

[44]

[45]

[46]

|47]

48]

[49]
[50]

[51]

Sriram Sankaran and Jeffrey M. Squyres and Brian Barrett and Andrew Lum-
sdaine and Jason Duell and Paul Hargrove and Eric Roman, “The LAM /MPI
checkpoint /restart framework : System-initiated checkpointing,” in LACSI
Symposium, (Sante Fe, New Mexico, USA), Oct. 2003.

Jeffrey M. Squyres and Brian Barrett and Andrew Lumsdaine, “The system
services interface (SSI) to LAM /MPI” Technical Report TR575, Indiana Uni-
versity, Computer Science Department, 2003.

B. Tierney and R. Aydt and D. Gunter and W. Smith and V. Taylor
and R. Wolsky and M. Swany, “A grid monitoring architecture. technical
report. gwd-perf-16-2, global grid forum.” citeseer.nj.nec.com/article/
tierney02grid.html, January 2002.

F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-
level scheduling on distributed heterogeneous networks,” in CD-ROM Procee-
dings of Supercomputing’96, (Pittsburgh, PA), IEEE, Nov. 1996.

Butler, R. and Engert, D. and Foster, I. and Kesselman, C. and Tuecke, S. and
Volmer, J. and Welch V., “A National-Scale Authentication Infrastructure,”
IEEE Computer, vol. 33, no. 12, pp. 60—66, 2000.

MPI Forum, “Mpi : A message passing interface standard,” International Jour-
nal of Supercomputer Applications, vol. 8, pp. 165-416, 1994.

J. Montagnat and H. Duque and J-M Pierson and V. Breton and L. Brunie
and LLE. Magnin, “Medical image content-based queries using the grid,” in
HealthGrid, (Lyon, France), January 16-17 2003.

Duque, Hector and Montagnat, Johan and Pierson, Jean-Marc and Magnin,
Isabelle and Brunie, Lionel, “DM? : A Distributed Medical Data Manager for
Grids,” in Biogrid 03, Tokyo May 12th to 15th 2003, proceedings of the IEEE
CCGrid03.

Jean-Marc Pierson and Lionel Brunie and David Coquil, “Semantic collabo-
rative web caching,” in WISE2002 : Web Information System Engineering,
(Singapour), pp. 30-39, dec 2002.

Lionel Brunie and David Coquil and Serge Simon, “Software architectures for
collaborative proxies in wide area information systems (position paper),” in
Fourth International Workshop on Parallel and Distributed Databases : inno-

vative applications and new architectures (PaDD’2001), (Miinich), september
2001.

L. Seitz and J. Pierson and L. Brunie, “Semantic access control for medical
applications in grid environments,” (Klagenfurt, Austria). proceedings of Euro-
Par 2003.

National Electrical Manufacturers Association, Digital Imaging and Commu-
nications in Medecine (DICOM). Rosslyn, Virginia, 2001. DICOM 3.

IEEE Storage System Standards Working Group, Reference Model for Open
Storage Systems Interconnection, september 1994. version 5.

J. Montagnat and F. Bellet and H. Benoit and V. Breton and L. Brunie and
H. Duque and Y. Legre and I.LE. Magnin et L. Maigne and S. Miguet and

217

J-M. Pierson and L. Seitz and T. Tweed, “Medical images simulation, storage
and processing on the european datagrid testbed,” Journal of Grid Computing
(JGC), vol. 2, pp. 387-400, december 2004.

[62] A. Oram, ed., Peer-to-peer : Harnessing the Power of Disruptive Technologies.
Sebastopol, California : O’Reilly, 2001.

[53] B. Cooper and H. Garcia-Molina, “Bidding for storage space in a peer-to-peer
data preservation system,” in Proceedings of the 22nd International Conference
on Distributed Computing Systems, (Vienna, Austria), ICDSC, July 2-5 2002.

[54] G. Fedak and C. Germain and V. Ne'’ri and F. Cappello, “Xtremweb : A generic
global computing system,” in Proceedings of the 1st IEEE/ACM International

Symposium on Cluster Computing and the Grid, (Brisbane, Australia), May
15-18 2001.

[55] R. Buyya and H. Stockinger and J. Giddy and D. Abramson, “Economic mo-
dels for management of resources in peer-to-peer and grid computing,” in In
Proceedings of International Conference on Commercial Applications for High-
Performance Computing, (Denver, Colorado, USA), August 20-24 2001.

[56] R.Buyya and D. Abramson and J. Giddy and H. Stockinger, “Economic models
for resource managementand scheduling in grid computing,” The Journal of
Concurrency and Computation : Practice and Ezperience (CCPE), May 2002.

[57] L. Gong, “Project jxta : A technology overview,” tech. rep., Sun Microsystems
Inc, April 2001. http ://www.jxta.org/project/www /docs/TechOverview.pdf.

[58] I. Foster and S. Tuecke and J. Unger, “OGSA data ser-
vices.” Also available as www.cs.man.ac.uk/grid-db/papers/
draft-ggf-dais-dataservices-ggf9.pdf.

[59] K. Czajkowski and D. Ferguson and I. Foster and J. Frey and S. Graham
and T. Maguire and D. Snelling and Steve Tuecke, “From open grid services
infrastructure to ws-resource framework : Refactoring & evolution,” tech. rep.,
Fujitsu, IBM and University of Chicago, decembre 2004.

[60] T.A. Howes and M. Smith., “A scalable, deployable directory service framework
for the internet,” tech. rep., Center for Information Technology Integration,
University of Michigan, 1995.

[61] J. Basney and M. Livny, “Deploying a high throughput computing cluster,” in
High Performance Cluster Computing, vol. 1, ch. 5, Prentice Hall PTR, May
1999.

[62] S. Chapinand J. Karpovich and A. Grimshaw, “The legion resource manage-
ment system,” in Proceedings of the 5th Workshop on Job Scheduling Strategies
for Parallel Processing, (San Juan, Puerto Rico), April 16 1999.

[63] A.S. Grimshaw, W. A. Wulf, and the whole Legion team, “The legion vision of
a worldwide virtual computer,” Communication of the ACM, vol. 40, pp. 39—
45, Jan. 1997.

|64] M. Romberg, “The unicore architecture : seamless access to distributed re-
sources,” in Proceedings of The Eighth International Symposium on High Per-
formance Distributed Computing, (Redondo Beach, CA, USA), 1999.

218

[65] J. Almond and D. Snelling, “UNICORE : uniform access to supercomputing
as an element of electronic commerce,” Future Generation Computer Systems,
vol. 15, pp. 539-548, Oct. 1999.

[66] R. Buyya and S. Venugopal, “The gridbus toolkit for service oriented grid
and utility computing : An overview and status report,” in Proceedings of the
First IEEE International Workshop on Grid Economics and Business Models
(GECON 2004), (Seoul, Korea), pp. 19-36pp, April 23 2004.

[67] Rajasekar and A. and M. Wan, R. Moore and W. Schroeder, “Data grid federa-
tion,” in PDPTA, Special Session on New Trends in Distributed Data Access,,
(Las Vegas NV), June 2004.

|68] Arcot Rajasekar et al, “Storage resource broker, managing distributed data in
a grid,” Computer Society of India Journal, Special Issue on SAN, vol. 33,
pp- 42-54, October 2003.

[69] D.B. Skillicorn, “The case for datacentric grids,” tech. rep., Queen’s Univer-
sity, Kingston, Canada, November 2001. Also available as http://www.cs.
queensu.ca/home/skill/papers.html.

[70] D.B. Skillicorn, “Distributed data-intensive computation and the datacentric
grid.” http://www.cs.queensu.ca/home/skill/papers.html, 2003.

|71] R. Byrom and B. Coghlan and A. Cooke and R. Cordenonsi and L. Cornwall
and A. Datta and A. Djaoui and L. Field and S. Fisher and S. Hicks and
S. Kenny and J. Magowan and W. Nutt and D. O’Callaghan and M. Oevers
and N. Podhorszki and J. Ryan and M. Soni and P. Taylor and A. Wilson
and X. Zhu, “The canonical producer : an instrument monitoring component,
of the relational grid monitoring architecture (r-gma),” in The 3rd Interna-
tional Symposium on Parallel and Distributed Computing in association with
HeteroPar’04, (University College Cork, Ireland), July 5-7 2004.

[72] A. Oram, ed., Peer-to-peer : Harnessing the Power of Disruptive Technologies.
Sebastopol, California : O’Reilly, 2001.

[73] C. H. Ding, S. Nutanong, and R. Buyya, “P2P networks for content sharing,”
tech. rep., Grid Computing and Distributed Systems Laboratory, University
of Melbourne, Australia, December 2003, Feb. 10 2004.

[74] N. Minar, “Distributed systems topologies : Part 1.” http://www.openp2p.
com/pub/a/p2p/2001/12/14/topologies_one.html, 2001.

[75] B. Peter and W. Tim and D. Bart and D. Piet, “A comparison of peer-to-

peer architectures,” tech. rep., Ghent University, Belgium, 2002. Broadband
Communication Networks Group (IBCN).

[76] Josh Cates, “Robust and efficient data management for a distributed hash
table.,” Master’s thesis, Massachusetts Institut of Technology (MIT), Boston,
USA, 2003.

[77] Russ Cox and Athicha Muthitacharoen and Robert T. Morris, “Serving dns
using a peer-to-peer lookup service,” in proceedings of the First International
Workshop on Peer-to-Peer Systems (IPTPS ’02), (Cambridge, MA), March
2002.

219

[78] D. Barkai, “An introduction to peer-to-peer computing.” Also available as
http://www.intel.com/update/departments/initech/it02012.pdf.

[79] Source Forge, “What is the gift project?.” http://cvs.sourceforge.net/
viewcvs.py/gift/giFT/README?rev=1.9, Sep 14 2002.

[80] M. Bergner, “Improving performance of modern peer-to-peer services,” Mas-
ter’s thesis, UMEA University, Department of Computer Science, Sweden,
2003.

|81] Danny Teaff and Dick Watson and bob Coyne, “The architecture of the high
performance storage system,” tech. rep., IBM, 1995.

[82] Jon Bakken and Eileen Berman and Chih-Hao Huang and Alexander Moi-
benko and Don Petravick and Ron Rechenmacher and Kurt Ruthmansdorfer,
“Enstore technical design document,” tech. rep., Fermilab, 1999. Also available
as http://www-isd.fnal.gov/enstore/design.html.

[83] D. Walsh and B. Lyon and G. Sager and J. Chang and D. Goldberg and S.
Kleiman and T. Lyon and R. Sandberg and and P. Weiss, “Overview of the
sun network file system,” in Proceedings of the 1985 Winter Usenixz Technical
Conference, January 1985.

[84] P. J. Leach, “A common internet file system (cifs/1.0) protocol,” tech. rep.,
Network Working Group, Internet Engineering Task Force, 1997.

[85] Dave Hitz and James Lau and Michael Malcom, “File system design for an
nfs file server appliance,” in USENIX San Francisco 1994 Winter Conference,
(San Francisco), January 1994.

[86] J. H. Morris and M. Satyanarayanan and M. H. Conner and J. H. Howard
and D. S. H. Rosenthal and F. D. Smith., “Andrew : A distributed personal
computing environment,” in Communications of the ACM, March 1986.

[87] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides, B. A. Bottos,
S. Chutani, C. F. Everhart, W. A. Mason, S.-T. Tu, and E. R. Zayas, “DE-
corum file system architectural overview,” in Proceedings of the Summer 1990
USENIX Conference : June 11-15, 1990, Anaheim, California, USA (USE-
NIX, ed.), (Berkeley, CA, USA), pp. 151-164, USENIX, Summer 1990.

|88 Interprocess Communications in Uniz; the nooks & crannies. New Jersey,
USA : Prentice Hall PTR, 1998.

[89] The Design of the UNIX Operating System. New Jersey, USA : Prentice Hall
PTR, 1986.

[90] L. Seitz and J. Pierson and L. Brunie, “Key management for encrypted data
storage in distributed systems,” in Proceedings of the second Security In Sto-
rage Workshop (SISW), (Washington), 2003.

[91] L. Seitz and J. Pierson and L. Brunie, “Semantic access control for medi-
cal applications in grid environments,” in Euro-Par 2003 Parallel Processing,
vol. LNCS 2790, pp. 374-383, 2003.

[92] L. Brunie and J-M. Pierson and D. Coquil, “Semantic collaborative web ca-
ching,” in Proceedings of the third international conference on Web Information
Systems Engineering (WISE’2002), (Singapore), pp. 30-39, Dec. 2002.

220

[93] L. Brunie and D. Coquil, “Enhancement of web proxies using semantic infor-
mation and cooperation,” in Proceedings of the sixth International Symposium
on Programming and Systems (ISPS’2003), (Alger, Algeria), Mar. 2003.

|94] N. Pauna, Evaluation des méthodes de mise en correspondance en imagerie
multimodale IRM/TEP thoracique et cardiaque. PhD thesis, Université Claude
Bernanrd Lyonl, 2004.

[95] Quoc Cuong Pham, Segmentation et mise en correspondance en imagerie car-

diaque multimodale conduites par un modele anatomique bi-cavites du cour.
PhD thesis, INSA Lyon, 2002.

[96] C. Lutz, “Reasoning about entity relationship diagrams with complex attribute
dependencies,” in Proceedings of the 2002 International Workshop on Descrip-
tion Logics, 2002.

[97] T. Riccardi, “Data modeling with entity-relationship diagrams.” Also available
as http://www.aw.com/info/riccardi/database/Riccardi_ch4.PDF.

[98] I. Blanquer and V. Hernandez and F. Mas and D. Segrelles, “A middleware grid
for storing, retrieving and processing dicom medical images.” DIDAMIC (Dis-
tributed Databases and processing in Medical Image Computing) workshop
MICCALI, Rennes, Saint-Malo, France, septembre 26-30 2004.

[99] Press, W.H. and Teukolsky, S.A. and Vetterling, W.T. and Flannery, B.P.,
Numerical Recipies in C (2nd ed.). Cambridge : Cambridge University Press,
1992.

[100] D. Box, Ch. Kindel, B. Grad, Essential COM. New York : Addison Wesley,
1998.

[101] William H. Press and William T. Vetterling and Saul A. Teukolsky and Brian
P. Flannery, Numerical Recipes in C++ : the art of scientific computing. Cam-
bridge : Cambridge University Press, pp. 100-115, 2002.

[102] Ossama Othman, Jaiganesh Balasubramanian, and Douglas C. Schmidt, “Per-
formance evaluation of an adaptive middleware load balancing and monitoring
service,” in 24th IEEFE International Conference on Distributed Computing
Systems (ICDCS), (Tokyo, Japan), May 23-26 2004.

[103| Jean-Paul Arcangeli and Abdelkader Hameurlain and Frédéric Migeon and
Franck Morvan, “Mobile agent based self-adaptive join for wide-area distribu-
ted query processing.,” J. Database Manag., vol. 15, no. 4, pp. 25-44, 2004.

[104] Pradeep Gore, Douglas C. Schmidt, Carlos O’'Ryan, and Ron Cytron, “Desi-
gning and optimizing a scalable corba notification service,” in Proceedings of
the ACM SIGPLAN Workshop on Optimization of Middleware and Distributed
Systems (OM 2001), (Snowbird, Utah), June 18 2001.

[105] Steve Vinoski, “CORBA : Integrating Diverse Applications Within Distributed
Heterogeneous Environments,” in IEEE Communications Magazine, vol. 35,
pp- 46-55, February 1997.

[106] Serge Miguet and Jean-Marc Nicod and Jean-Marc Pierson, “A parallel envi-
ronment for 3d image processing,” in Symposium on Parallel Computing for
Solving Large Scale and Irregular Applications (STRATAGEME’96), (Sophia-
Antipolis, France), pp. 189-199, INRIA, 1996.

221

[107] K. Hassan, T. Tweed and S. Miguet, “A multi-resolution approach for a
content-based image retrieval on the grid. Application to breast cancer de-
tection,” in Methods of Information in Medicine, vol. 1, pp. 25-33, 2005.

[108] H. Atoui, D. Sarrut and S. Miguet, “Usefulness of image morphing techniques
in cancer treatment by conformal radiotherapy,” in SPIE Medical Imaging,
vol. 2, pp. 45-53, 2004.

[109] J-M Pierson, L. Seitz, H. Duque, J. Montagnat, “Meta data for efficient, secure
and extensible access to data in a medical grid,” in Database and expert systems
applications, (Zaragoza, Spain), 30 August - 3 september 2004.

[110] S. Atnafu, R. Chbeir, D. Coquil, L. Brunie, “Integrating similarity-based que-
ries in image DBMSs,” in Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC), (Nicosia, Cyprus), ACM, March 14-17 2004.

[111] I. E. Magnin, J. Montagnat, P. Clarysse, J. Nenonen, and T. Katila, eds.,
Functional Imaging and Modeling of the Heart, Second International Work-
shop, FIMH 2003, Lyon, France, June 5-6, 2003 Proceedings, vol. 2674 of
Lecture Notes in Computer Science, 2003.

[112] V. Breton, A.E.Solomonides, R.H.McClatchey, “A perspective on the health-
grid initiative,” in 4th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2004), (Chicago USA), April 2004.

[113] Benoit Planquelle and Jean-Francois Méhaut and Nathalie Revol, “Mc-pm
Multi-cluster approach with pm2.,” in PDPTA, pp. 779-785, 1999.

[114] Olivier Aumage and Luc Bougé and Jean-Francois Méhaut and Raymond Na-
myst, “Madeleine ii : a portable and efficient communication library for high-
performance cluster computing.,” Parallel Computing, vol. 28, no. 4, pp. 607—
626, 2002.

[115] Olivier Aumage and Luc Bougé and Lionel Eyraud and Guillaume Mercier and
Raymond Namyst and Loic Prylli and Alexandre Denis and Jean-Francois
Méhaut, “High performance computing on heterogeneous clusters with the
madeleine ii communication library.,” Cluster Computing, vol. 5, no. 1, pp. 43—
54, 2002.

[116] V. Breton, P. Clarysse, Y. Germain, E. Jannot, Y. Legre, C. Loomis, J. Mon-
tagnat, J-M Moureaux, A. Osorio, X. Pennec and R. Texier, “Grid-enabling

medical images analysis,” in Journal of Clinical Monitoring and Computing,
Special Issue, to be published, 2005.

[117] Makela, T. and Pham, Quoc Cuong and Clarysse, P. and Nenonen, J. and
Lotjonen, J. and Sipila, O. and Hanninen, H. and Lauerma, K. and Knutti,
J. and Katila, T. and Magnin, L.LE., “A 3d model-based registration approach
for the pet, mr and mcg cardiac data fusion,” Medical Image Analysis, vol. 7,
no. 3, pp- 377-389, 2003.

[118] Pham, Q-C. and Vincent, F. and Clarysse, P. and Croisille, P. and Magnin,
LE., “A fem-based deformable model for the 3d segmentation and tracking
of the heart in cardiac mri,” in 2nd International Symposium on Image and
Signal Processing and Analysis (ISPA 2001), (Pula, Croatia), pp. 250-254,
2001.

2,

222

[119] Xu, C and Prince , J L, “Snakes, shapes, and gradient vector flow,” IEEE
Transactions on Image Processing, vol. 7, no. 3, pp. 359-369, 1998.

[120] Zienkiewicz, O.C. and Taylor, R. L., La methode des elements finis. Paris :
AFNOR Technique, 1991.

[121] Brecht Claerhout, “From grif to healthgrid : confidentiality and ethical issues,”
in HealthGrid, (Clermont-Ferrand), january 29th - 30th 2004.

[122] Y. Cardenas, JM. Pierson, L. Brunie, “Uniform distributed cache service for
grid computing,” in 2nd International Workshop on Grid and PeertoPeer Com-

puting Impacts on Large Scale Heterogemeous Distributed Database Systems,
(Copenhagen, Denmark), DEXA2005, August 2005. to be published.

[123] R. Saadi, JM. Pierson, L. Brunie, “Apc : Access pass certificate, distrust cer-
tification model for large access in pervasive environement,” in IEEE Inter-
national Conference on Pervasive Services, (Santorini, Greece), ICPS’05, July
2005. to be published.

[124] D Cheung-Foo-Wo, J-Y Tigli, and M. Riveill, “Architecture orientée composant
et interactions implicites, application aux ordinateurs corporels,” in Cepadues
(Premiéres Journées Francophones : Mobilité et Ubiquité, ed.), (Sophia Anti-
polis, France), 1-3 juin 2004.

[125] M. Blay-Fornarino, D. Emsellem, A-M. Pinna-Dery, and M. Riveill, “Un service
d’interactions : principes et implémentation,” in RSTI - série TSI, vol. 2,
pp. 175-204, 2004.

11.2 Electronic Links

[126] DataGrid project of the FP5, “http ://eu-datagrid.web.cern.ch/eu-datagrid.”
The Grid for the European Union, jan. 2001-feb. 2004.

[127] Condor project, “http ://www.cs.wisc.edu/condor.” Cycle Stealing Technology
for High Throughput Computing, University of Wisconsin at Madison, USA,
Professor Miron Livny.

128| Legion project, “http ://www.cs.virginia.edu/ legion.” University of Virginia,
g
USA.

[129] Globus project, “http ://www.globus.org.”

[130] Cross Grid project, “http ://www.crossgrid.org.” IST Programme of the Eu-
ropean Commission, March 1, 2002.

[131] Medi Grid project, “http ://www.creatis.insa-lyon.fr /medigrid.”

[132] Castor project, “http ://wwwinfo.cern.ch/pdp/castor.” Cern Advance STO-
Rage manager.

[133] HPSS, “http ://www4.clearlake.ibm.com /hpss/index.jsp.” High Performance
Storage System.

[134] Corba project, “http ://www.omg.org.”
[135] CTN, “http ://www.erl.wustl.edu/dicom /ctn.html.”

223

[136] DCMTK Dicom Toolkit, “http :/ /www.offis.uni-
oldenburg.de/projekte/dicom /soft-docs/soft01 _e.html.”

[137] Globus-OGSA, “http ://www.globus.org/ogsa.”

[138] SPITFIRE, “http ://edg-wp2.web.cern.ch/edg-wp2 /spitfire/index.html.”

[139] MPI Forum, “http ://www.mpi-forum.org/.”

[140] Chord project, “http ://www.pdos.lcs.mit.edu/chord/.” Flexible lookup pri-

mitive for peer-to-peer environments, Frans Kaashoek, Massachussets Institut
of Technology (MIT).

[141] PVM project, “http ://www.csm.ornl.gov/pvm/pvmm_home.html.” Parallel
Virtual Machine.

[142] DICOM, “http ://medical.nema.org/.” Digital Imaging and COmmunications
in Medicine.

[143] European IST project of the FP6, “http ://www.eu-egee.org/.” Enabling Grids
for E-science and industry in Europe, apr. 2004-mar. 2006.

[144] eDiaMoND project , “http ://www.ediamond.ox.ac.uk/.” Oxford University’s
grid computing project, 1st Dec 2002, 30th November 2004.

[145] e-Science project, “http ://e-science.ox.ac.uk/.” Oxford e-Science Centre.

[146] Mammogrid project, “http ://mammogrid.vitamib.com/.” 1st 2001.

[147] SMF, “http ://www.mirada-solutions.com/PH185d5.html ?PAGE_ID=741.”
Standard Mammogram Form.

[148] CREATIS, “http ://www.creatis.insa-lyon.fr/.” Centre de Recherche et d’Ap-
plications en Traitement de I'Image et du Signal.

[149] LIRIS, “http ://liris.curs.fr/.” Laboratoire d’Ingénierie des Systémes d’Infor-
mation.

[150] DISMEDI project, “http ://www.medicaltech.org/dismedi/.”

[151] Polytechnic University of Valencia - Spain, “http ://www.grycap.upv.es.” High
Performance Networking and Computing Group.

[152] CAMAEC project, “http ://www.grycap.upv.es/camaec/.” High Performance
Networking and Computing Group at Polytechnic University of Valencia -
Spain.

[153] EUTIST-M Initiative, “http ://www.medicaltech.org/.” IST Programme of
the European Commission, IST-1999-20226.

[154] AQUATICS project, “http ://aquatics.crs4.it/public/.” IST Programme of the
European Commission, IST-1999-20226.

[155] University Hospitals of Geneva, “http ://www.dim.hcuge.ch /03 _projects_en.htm.”
Division of Medical Informatics.

[156] IRMA project, “http ://libra.imib.rwthaachen.de/irma/index en.php.” Image
Retrieval in Medical Applications, Germany.

[157] ASSERT project, “http ://rv12.ecn.purdue.edu/ cbir-
dev/www /cbirmain.html.”

224

[158] GRIDS Laboratory, “http ://www.gridbus.org/.” Grid Computing and Distri-
buted Systems Laboratory.

[159] Grid Computing Info Center, “http ://www.gridcomputing.com/.” Rajkumar
Buyya.

[160] LDAP, “http ://www.openldap.org/.” Lightweight Directory Access Protocol.

[161] JXTA project, “http ://www.jxta.org/.” SUN microsystems, Bill Joy and Mike
Clary.

[162] The Global Grid Forum , “http ://www.ggf.org.” GGF.
[163] WSRF Project, “http ://www.globus.org/wsrf/.”
[164] Globe project, “http ://www.cs.vu.nl/ steen/globe/.”

[165] UNICORE project, “http ://unicore.sourceforge.net/.” UNICORE (Uniform
Interface to Computing Resources).

[166] SRB project, “http ://www.npaci.edu/dice/srb/.” Storage Resource Broker,
San Diego Supercomputer Center (SDSC).

[167] MCAT project, “http ://www.npaci.edu/dice/software/srb/mcat.html.” Me-
tadata Catalog, San Diego Supercomputer Center (SDSC).

[168] LHC Project, “http ://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.”
Large Hadron Collider (LHC).

[169] LCG Project, “http ://lcg.web.cern.ch/lcg/.” LHC Computing Grid.

[170] ARDA Project, “http ://lcg.web.cern.ch/lcg/peb/arda/.” Grid Analysis Pro-
totypes of the LHC Experiments, CERN, Switzerland.

[171] K-GRID project, “http ://gridcenter.or.kr/.” Korea, 2002 to 2006,.

[172] EUROGRID Project, “http ://www.eurogrid.org/.” Nov 1, 2000 - Jan 31,
2004.

[173] The GridCafe, “http ://gridcafe.web.cern.ch/gridcafe/index.html.” CERN,
Switzerland.

[174] Datacentric Grid Project, “http ://www.cs.queensu.ca/home /skill /datacentric.html.”
Pr. David Skillicorn, Queen’s University, Kingston, Ontario, Canada.

[175] IPG Project, “http ://www.ipg.nasa.gov/.” NASA’s Information Power Grid
(IPG).

[176] Freenet Project, “http ://freenet.sourceforge.net/.” Tan Clarke.

[177] Napster Project, “http ://www.napster.com/.”

[178] Gnutella Project, “http ://www.gnutella.com/.”

[179] Mojeo Nation Project, “http ://sourceforge.net/projects/mojonation.”
[180] OpenFT Project, “http ://www.infoanarchy.org/wiki/wiki.pl 7openft.”

[181] Oceanstore Project, “http ://oceanstore.cs.berkeley.edu/.” UC Berkeley Com-
puter Science Division.

[182] FastTrack Project, “http ://www.slyck.com/ft.php.”
[183] Kazaa, “http ://www.kazaa.com/us/index.htm.”

225

[184] Eurostore Project, “http ://eurostore.web.cern.ch/eurostore/.” CERN.
|185] Enstore Project, “http ://www-stken.fnal.gov/enstore/.” Fermilab, USA.
[186] Disk Cache Project, “http ://www-dcache.desy.de/.” DESY.

[187] our team page at Liris, “http ://liris.cnrs.fr/ jpierson/.” LIRIS.

[188] GNUPLOT, “http ://www.gnuplot.info/.”

[189] Extensible Markup Language XML, “http ://www.xml.org/.” Extensible Mar-
kup Language XML.

[190] Webster’s Dictionary, “http ://www.bennetyee.org/http_ webster.cgi.”
[191] Object Management Group (OMG), “http ://www.omg.org.”

[192] COM : Component Object Model Technologies,
“http ://www.microsoft.com/com/default.mspx.”
[193] Java Remote Method Invocation (Java RMI),

“http ://java.sun.com/products/jdk /rmi/.”
[194] Deutsche Elektronen-Synchrotron DESY |, “http ://www.desy.de/html/home/.”

[195] Grille pour le Traitement d’'Informations Médicales (Ragtime),
“http ://liris.univ-lyon2.fr/ miguet /ragtime/.”

[196] MYSQL, “http ://www.mysql.com/.”

[197] HL7 : Health Level 7, “http ://www.hl7.ca/.”

[198] medGIFT Project, “http :/ /www.sim.hcuge.ch /medgift /w01 presentation fr.htm.”
[199] CasImage Project, “http ://www.casimage.com/.”

[200] PTM3D Project, “http ://www.limsi.fr /rs99ff/chm99ff /imm99ff/imm4 /.”

[201] CODA Project, “http ://www.coda.cs.cmu.edu/.” Carnegie Mellon University,
USA.

[202] Berkeley Open Infrastructure for Network Computing (BOINC),
“http ://boinc.berkeley.edu/.”

226

	Pont d'embarquement
	Page de titre
	Résumé
	Abstract
	Acknowledgments
	Table des matières
	Table des figures
	Chapitre 1 Résumé étendu
	1.1 Introduction
	1.2 Contexte applicatif
	1.3 Etat de l'art
	1.4 L'architecture DSE (Distributed System Engines)
	1.5 DM2 : Distributed Medical Data Manager
	1.6 Expérimentations et évaluation
	1.7 Conclusion

	Chapitre 2 Introduction
	Summary 2
	2.1 The challenge
	2.2 Medical data and metadata
	2.3 Medical use case
	2.4 Distribution and grids
	2.5 Ongoing work
	2.6 Positioning
	2.7 Document overview

	Chapitre 3 Related work
	Summary 3
	3.1 Grip technologies
	3.2 Distributed computing technologies
	3.3 Images storage

	Chapitre 4 Distributed System Engines (DSE Architecture)
	Summary 4
	4.1 Our project
	4.2 Pyramidal architecture
	4.3 DSE0 : Message passing engine layer
	4.4 DSE1 : Transaction layer
	4.5 DSE2 : Distributed layer
	4.6 DSE3 : Application layer
	4.7 DSE4 : User layer
	4.8 Discussion

	Chapitre 5 Implementation
	Summary 5
	5.1 Sketching our system
	5.2 The Distributed System Engine Manager (DSEM)
	5.3 Distributed medical data manager (DM2)

	Chapitre 6 Experimentations
	Summary 6
	6.1 Test environment
	6.2 Performance tests
	6.3 A medical distributed system

	Chapitre 7 Discussion and perspectives
	7.1 The DSE architecture
	7.2 Integration of resources
	7.3 A datacentric schema
	7.4 Images storage
	7.5 Conclusion and perspectives

	Chapitre 8 Glossary, acronyms and definitions
	8.1 DSE glossary
	8.2 Acronyms
	8.3 Definitions

	Chapitre 9 Annexes
	9.1 Annexe A : Machine configuration for an Engine Server at INSA Lyon
	9.2 Annexe B : Machine configuration for an Engine Client at Cardiological Hospital of Lyon
	9.3 Annexe C : Access to DCMTK and CTN at Cardiological Hospital of Lyon
	9.4 Annexe D : Machine configuration for a High Performance Engine Server at INSA de Lyon
	9.5 Annexe E : Server Database Description
	9.6 Annexe F : Client database description
	9.7 Annexe G : Links to the documentation

	Chapitre 10 Application's annexes
	10.1 Annexe I : Similarity
	10.2 Annexe II : 3 D+time segmentation of magnetic resonance cardiac images

	Chapitre 11 Bibliography
	11.1 References
	11.2 Electronic links

